42 research outputs found

    Use of MMG signals for the control of powered orthotic devices: Development of a rectus femoris measurement protocol

    Get PDF
    Copyright © 2009 Rehabilitation Engineering and Assistive Technology Society (RESNA). This is an Author's Accepted Manuscript of an article published in Assistive Technology, 21(1), 1 - 12, 2009, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/10400430902945678.A test protocol is defined for the purpose of measuring rectus femoris mechanomyographic (MMG) signals. The protocol is specified in terms of the following: measurement equipment, signal processing requirements, human postural requirements, test rig, sensor placement, sensor dermal fixation, and test procedure. Preliminary tests of the statistical nature of rectus femoris MMG signals were performed, and Gaussianity was evaluated by means of a two-sided Kolmogorov-Smirnov test. For all 100 MMG data sets obtained from the testing of two volunteers, the null hypothesis of Gaussianity was rejected at the 1%, 5%, and 10% significance levels. Most skewness values were found to be greater than 0.0, while all kurtosis values were found to be greater than 3.0. A statistical convergence analysis also performed on the same 100 MMG data sets suggested that 25 MMG acquisitions should prove sufficient to statistically characterize rectus femoris MMG. This conclusion is supported by the qualitative characteristics of the mean rectus femoris MMG power spectral densities obtained using 25 averages

    Challenges and opportunities in the design and construction of a GIS-based emission inventory infrastructure for the Niger Delta region of Nigeria

    Get PDF
    © 2017, Springer-Verlag Berlin Heidelberg. Environmental monitoring in middle- and low-income countries is hampered by many factors which include enactment and enforcement of legislations; deficiencies in environmental data reporting and documentation; inconsistent, incomplete and unverifiable data; a lack of access to data; and technical expertise. This paper describes the processes undertaken and the major challenges encountered in the construction of the first Niger Delta Emission Inventory (NDEI) for criteria air pollutants and CO2 released from the anthropogenic activities in the region. This study focused on using publicly available government and research data. The NDEI has been designed to provide a Geographic Information System-based component of an air quality and carbon management framework. The NDEI infrastructure was designed and constructed at 1-, 10- and 20-km grid resolutions for point, line and area sources using industry standard processes and emission factors derived from activities similar to those in the Niger Delta. Due to inadequate, incomplete, potentially inaccurate and unavailable data, the infrastructure was populated with data based on a series of best possible assumptions for key emission sources. This produces outputs with variable levels of certainty, which also highlights the critical challenges in the estimation of emissions from a developing country. However, the infrastructure is functional and has the ability to produce spatially resolved emission estimates

    Mechanical sludge disintegration for the production of carbon source for biological nutrient removal.

    No full text
    The primary driver for a successful biological nutrient removal is the availability of suitable carbon source, mainly in the form of volatile fatty acids (VFA). Several methods have been examined to increase the amount of VFAs in wastewater. This study investigates the mechanism of mechanical disintegration of thickened surplus activated sludge by a deflaker technology for the production of organic matter. This equipment was able to increase the soluble carbon in terms of VFA and soluble chemical oxygen demand (SCOD) with the maximum concentration to be around 850 and 6530 mg l−1, for VFA and SCOD, respectively. The particle size was reduced from 65.5 to 9.3 μm after 15 min of disintegration with the simultaneous release of proteins (1550 mg l−1) and carbohydrates (307 mg l−1) indicating floc disruption and breakage. High performance size exclusion chromatography investigated the disintegrated sludge and confirmed that the deflaker was able to destroy the flocs releasing polymeric substances that are typically found outside of cells. When long disintegration times were applied (10 min or 9000 kJ kg−1 TS of specific energy) smaller molecular size materials were released to the liquid phase, which are considered to be found inside the cells indicating cell lysis

    Dual lag screw cephalomedullary nail versus the classic sliding hip screw for the stabilization of intertrochanteric fractures. A prospective randomized study

    No full text
    This study is a randomized prospective study comparing two fracture fixation implants, the extramedullary sliding hip screw (SHS) and the dual lag screw cephalomedullary nail, in the treatment of intertrochanteric femoral fractures in the elderly. One hundred and sixty-five patients with low-energy intertrochanteric fractures, classified as AO/OTA 31A, were prospectively included during a 2-year period (2005-2006). Patients were randomized into two groups: group A included 79 hip fractures managed with sliding hip screws and group B included 86 fractures treated with cephalomedullary nails. Delay to surgery, duration of surgery, time of fluoroscopy, total hospital stay, implant-related complications, transfusion requirements, re-operation details, functional recovery, and mortality were recorded. The mean follow-up was 36 months (24-56 months). The mean surgical time was statistically significantly shorter and fluoroscopy time longer for the group B. No intraoperative femoral shaft fractures occurred. There was no statistically significant difference in the functional recovery score, reoperation, and mortality rates between the 2 groups. A new type of complication, the so-called Z-effect phenomenon, was noticed in the cephalomedullary nail group. There are no statistically significant differences between the two techniques in terms of type and rate of complications, functional outcome, reoperation and mortality rates when comparing the SHS and the cephalomedullary nail for low-energy AO/OTA 31A intertrochanteric fractures. Our data do not support recommendations for the use of one implant over the other. © 2012 The Author(s)
    corecore