11 research outputs found
Raman scattering in C_{60} and C_{48}N_{12} aza-fullerene: First-principles study
We carry out large scale {\sl ab initio} calculations of Raman scattering
activities and Raman-active frequencies (RAFs) in
aza-fullerene. The results are compared with those of .
Twenty-nine non-degenerate polarized and 29 doubly-degenerate unpolarized RAFs
are predicted for . The RAF of the strongest Raman
signal in the low- and high-frequency regions and the lowest and highest RAFs
for are almost the same as those of .
The study of reveals the importance of electron correlations and
the choice of basis sets in the {\sl ab initio} calculations. Our best
calculated results for with the B3LYP hybrid density functional
theory are in excellent agreement with experiment and demonstrate the desirable
efficiency and accuracy of this theory for obtaining quantitative information
on the vibrational properties of these molecules.Comment: submitted to Phys.Rev.
Continuous symmetry of C60 fullerene and its derivatives
Conventionally, the Ih symmetry of fullerene C60 is accepted which is
supported by numerous calculations. However, this conclusion results from the
consideration of the molecule electron system, of its odd electrons in
particular, in a close-shell approximation without taking the electron spin
into account. Passing to the open-shell approximation has lead to both the
energy and the symmetry lowering up to Ci. Seemingly contradicting to a
high-symmetry pattern of experimental recording, particularly concerning the
molecule electronic spectra, the finding is considered in the current paper
from the continuous symmetry viewpoint. Exploiting both continuous symmetry
measure and continuous symmetry content, was shown that formal Ci symmetry of
the molecule is by 99.99% Ih. A similar continuous symmetry analysis of the
fullerene monoderivatives gives a reasonable explanation of a large variety of
their optical spectra patterns within the framework of the same C1 formal
symmetry exhibiting a strong stability of the C60 skeleton.Comment: 11 pages. 5 figures. 6 table