5,546 research outputs found
Constituent quark scaling violation due to baryon number transport
In ultra-relativistic heavy ion collisions at \roots\approx200 GeV, the
azimuthal emission anisotropy of hadrons with low and intermediate transverse
momentum ( GeV/c) displays an intriguing scaling. In particular,
the baryon (meson) emission patterns are consistent with a scenario in which a
bulk medium of flowing quarks coalesces into three-quark (two-quark) "bags."
While a full understanding of this number of constituent quark (NCQ) scaling
remains elusive, it is suggestive of a thermalized bulk system characterized by
colored dynamical degrees of freedom-- a quark-gluon plasma (QGP). In this
scenario, one expects the scaling to break down as the central energy density
is reduced below the QGP formation threshold; for this reason, NCQ-scaling
violation searches are of interest in the energy scan program at the
Relativistic Heavy Ion Collider (RHIC). However, as \roots is reduced, it is
not only the initial energy density that changes; there is also an increase in
the net baryon number at midrapidity, as stopping transports entrance-channel
partons to midrapidity. This phenomenon can result in violations of simple NCQ
scaling. Still in the context of the quark coalescence model, we describe a
specific pattern for the break-down of the scaling that includes different flow
strengths for particles and their anti-partners. Related complications in the
search for recently suggested exotic phenomena are also discussed.Comment: 7 pages, 2 tables, 2 figures. Wording sharpened. Two tables added, to
quantify the estimate of stopped quark fraction
Analysis of wasp-waisted hysteresis loops in magnetic rocks
The random-field Ising model of hysteresis is generalized to dilute magnets
and solved on a Bethe lattice. Exact expressions for the major and minor
hysteresis loops are obtained. In the strongly dilute limit the model provides
a simple and useful understanding of the shapes of hysteresis loops in magnetic
rock samples.Comment: 11 pages, 4 figure
A Combined EIS-NVSS Survey Of Radio Sources (CENSORS) III: Spectroscopic observations
The Combined EIS-NVSS Survey Of Radio Sources (CENSORS) is a 1.4GHz radio
survey selected from the NRAO VLA Sky Survey (NVSS) and complete to a
flux-density of 7.2mJy. It targets the ESO Imaging Survey (EIS) Patch D, which
is a 3 by 2 square degree field centred on 09 51 36.0, -21 00 00 (J2000). This
paper presents the results of spectroscopic observations of 143 of the 150
CENSORS sources. The primary motivation for these observations is to achieve
sufficient spectroscopic completeness so that the sample may be used to
investigate the evolution of radio sources.
The observations result in secure spectroscopic redshifts for 63% of the
sample and likely redshifts (based on a single emission line, for example) for
a further 8%. Following the identification of the quasars and star-forming
galaxies in the CENSORS sample, estimated redshifts are calculated for the
remainder of the sample via the K-z relation for radio galaxies. Comparison of
the redshift distribution of the CENSORS radio sources to distributions
predicted by the various radio luminosity function evolution models of Dunlop &
Peacock 1990, results in no good match. This demonstrates that this sample can
be used to expand upon previous work in that field.Comment: Accepted for publication in MNRAS. This version has some reduced
resolution figures and 13 associated gif files. A version with all figures
incorporated (at full resolution) is available at
http://www.roe.ac.uk/~pnb/papers/censors_spectro.pd
RMS Radio Source Contributions to the Microwave Sky
Cross-correlations of the WMAP full sky K, Ka, Q, V, and W band maps with the
1.4 GHz NVSS source count map and the HEAO I A2 2-10 keV full sky X-ray flux
map are used to constrain rms fluctuations due to unresolved microwave sources
in the WMAP frequency range. In the Q band (40.7 GHz), a lower limit, taking
account of only those fluctuations correlated with the 1.4 GHz radio source
counts and X-ray flux, corresponds to an rms Rayleigh-Jeans temperature of ~ 2
microKelvin for a solid angle of one square degree. The correlated fluctuations
at the other bands are consistent with a beta = -2.1 +- 0.4 frequency spectrum.
Using the rms fluctuations of the X-ray flux and radio source counts, and the
cross-correlation of these two quantities as a guide, the above lower limit
leads to a plausible estimate of ~ 5 microKelvin for Q-band rms fluctuations in
one square degree. This value is similar to that implied by the excess, small
angular scale fluctuations observed in the Q band by WMAP, and is consistent
with estimates made by extrapolating low-frquency source counts.Comment: 17 pages, 8 figures, submitted to Ap
On Quasar Masses and Quasar Host Galaxies
The mass of massive black holes in quasar cores can be deduced using the
typical velocities of Hb-emitting clouds in the Broad Line Region (BLR) and the
size of this region. However, this estimate depends on various assumptions and
is susceptible to large systematic errors. The Hb-deduced black hole mass in a
sample of 14 bright quasars is found here to correlate with the quasar host
galaxy luminosity, as determined with the Hubble Space Telescope (HST). This
correlation is similar to the black hole mass vs. bulge luminosity correlation
found by Magorrian et al. in a sample of 32 nearby normal galaxies. The
similarity of the two correlations is remarkable since the two samples involve
apparently different types of objects and since the black hole mass estimates
in quasars and in nearby galaxies are based on very different methods.
This similarity provides a ``calibration'' of the Hb-deduced black hole mass
estimate, suggesting it is accurate to +-0.5 on log scale. The similarity of
the two correlations also suggests that quasars reside in otherwise normal
galaxies, and that the luminosity of quasar hosts can be estimated to +-0.5 mag
based on the quasar continuum luminosity and the Hb line width. Future imaging
observations of additional broad-line active galaxies with the HST are required
in order to explore the extent, slope, and scatter of the black hole mass vs.
host bulge luminosity correlation in active galaxies.Comment: Accepted for publication in ApJ Letters, 7 pages, aas2pp4.st
Keck Spectroscopy of Faint 3<z<8 Lyman Break Galaxies:- Evidence for a Declining Fraction of Emission Line Sources In the Redshift Range 6<z<8
Using deep Keck spectroscopy of Lyman break galaxies selected from infrared
imaging data taken with WFC3/IR onboard the Hubble Space Telescope, we present
new evidence for a reversal in the redshift-dependent fraction of star forming
galaxies with detectable Lyman alpha emission in the redshift range 6.3 < z <
8.8. Our earlier surveys with the DEIMOS spectrograph demonstrated a
significant increase with redshift in the fraction of line emitting galaxies
over the interval 4 < z < 6, particularly for intrinsically faint systems which
dominate the luminosity density. Using the longer wavelength sensitivities of
LRIS and NIRSPEC, we have targeted 19 Lyman break galaxies selected using
recent WFC3/IR data whose photometric redshifts are in the range 6.3 < z < 8.8
and which span a wide range of intrinsic luminosities. Our spectroscopic
exposures typically reach a 5-sigma sensitivity of < 50 A for the rest-frame
equivalent width (EW) of Lyman alpha emission. Despite the high fraction of
emitters seen only a few hundred million years later, we find only 2 convincing
and 1 possible line emitter in our more distant sample. Combining with
published data on a further 7 sources obtained using FORS2 on the ESO VLT, and
assuming continuity in the trends found at lower redshift, we discuss the
significance of this apparent reversal in the redshift-dependent Lyman alpha
fraction in the context of our range in continuum luminosity. Assuming all the
targeted sources are at their photometric redshift and our assumptions about
the Lyman alpha EW distribution are correct, we would expect to find so few
emitters in less than 1% of the realizations drawn from our lower redshift
samples. Our new results provide further support for the suggestion that, at
the redshifts now being probed spectroscopically, we are entering the era where
the intergalactic medium is partially neutral.Comment: 8 pages, 5 figures, Accepted to ApJ 10/1/1
Quasars, their host galaxies, and their central black holes
We present the final results from our deep HST imaging study of the hosts of
radio-quiet quasars (RQQs), radio-loud quasars (RLQs) and radio galaxies (RGs).
We describe new WFPC2 R-band observations for 14 objects and model these images
in conjunction with the data already reported in McLure et al (1999). We find
that spheroidal hosts become more prevalent with increasing nuclear luminosity
such that, for nuclear luminosities M_V < -23.5, the hosts of both radio-loud
and radio-quiet AGN are virtually all massive ellipticals. Moreover we
demonstrate that the basic properties of these hosts are indistinguishable from
those of quiescent, evolved, low-redshift ellipticals of comparable mass. This
result kills any lingering notion that radio-loudness is determined by
host-galaxy morphology, and also sets severe constraints on evolutionary
schemes which attempt to link low-z ULIRGs with RQQs. Instead, we show that our
results are as expected given the relationship between black-hole and spheroid
mass established for nearby galaxies, and apply this relation to estimate the
mass of the black hole in each object. The results agree very well with
completely-independent estimates based on nuclear emission-line widths; all the
quasars in our sample have M(bh) > 5 x 10^8 solar masses, while the radio-loud
objects are confined to M(bh) > 10^9 solar masses. This apparent mass-threshold
difference, which provides a natural explanation for why RQQs outnumber RLQs by
a factor of 10, appears to reflect the existence of a minimum and maximum level
of black-hole radio output which is a strong function of black-hole mass.
Finally, we use our results to estimate the fraction of massive
spheroids/black-holes which produce quasar-level activity. This fraction is
\~0.1% at the present day, rising to > 10% at z = 2-3.Comment: Revised version accepted for publication in Monthly Notices of the
Royal Astronomical Society. 46 pages, the final 19 of which comprise an
Appendix. 15 figures in main text. A further 14 4-panel greyscale plots and
14 line plots which appear in the Appendix have been reproduced here with
reduced quality due to space limitations. A full resolution copy of the
manuscript can be obtained via ftp://ftp.roe.ac.uk/pub/jsd/dunlop2002.ps.g
The final two redshifts for radio sources from the equatorial BRL sample
Best, Rottgering and Lehnert (1999, 2000a) defined a new sample of powerful
radio sources from the Molonglo Reference Catalogue, for which redshifts were
compiled or measured for 177 of the 178 objects. For the final object,
MRC1059-010 (3C249), the host galaxy is here identified using near-infrared
imaging, and the redshift is determined from VLT spectroscopy. For one other
object in the sample, MRC0320+053 (4C05.14), the literature redshift has been
questioned: new spectroscopic observations of this object are presented,
deriving a corrected redshift. With these two results, the spectroscopic
completeness of this sample is now 100%.
New redshifts are also presented for PKS0742+10 from the Wall & Peacock 2.7
GHz catalogue, and PKS1336+003 from the Parkes Selected Regions. PKS0742+10
shows a strong neutral hydrogen absorption feature in its Lyman-alpha emission
profile.Comment: 4 pages. LaTeX. Accepted for publication in MNRA
Cross-Correlation of the Cosmic Microwave Background with Radio Sources: Constraints on an Accelerating Universe
We present a new limit on the cosmological constant based on the absence of
correlations between the cosmic microwave background (CMB) and the distribution
of distant radio sources. In the cosmological constant-cold dark matter models
currently favored, such correlations should have been produced via the
integrated Sachs-Wolfe effect, assuming that radio sources trace the local
(z=1) matter density. We find no evidence of correlations between the COBE 53Hz
microwave map and the NVSS 1.4 GHz radio survey. The implied 95% CL limit on
the cosmological constant is Lambda < 0.74, in marginal agreement with the
values suggested by recent measurements of the CMB anisotropy and type-IA
supernovae observations, 0.6 < Lambda < 0.7. If the cosmological model does lie
in this range, then the integrated Sachs-Wolfe effect should be detectable with
upcoming CMB maps and radio surveys.Comment: 5 pages; 3 figures; submitted to PR
First Cluster results of the magnetic field structure of the mid- and high-altitude cusps
International audienceMagnetic field measurements from the four Cluster spacecraft from the mid- and high-altitude cusp are presented. Cluster underwent two encounters with the mid-altitude cusp during its commissioning phase (24 August 2000). Evidence for field-aligned currents (FACs) was seen in the data from all three operating spacecraft from northern and southern cusps. The extent of the FACs was of the order of 1 RE in the X-direction, and at least 300 km in the Y-direction. However, fine-scale field structures with scales of the order of the spacecraft separation (300 km) were observed within the FACs. In the northern crossing, two of the spacecraft appeared to lie along the same magnetic field line, and observed very well matched signals. However, the third spacecraft showed evidence for structuring transverse to the field on scales of a few hundred km. A crossing of the high-altitude cusp from 13 February 2001 is presented. It is revealed to be a highly dynamic structure with the boundaries moving with velocities ranging from a few km/s to tens of km/s, and having structure on timescales ranging from less than one minute up to several minutes. The cusp proper is associated with the presence of a very disordered magnetic field, which is entirely different from the magnetosheath turbulence
- …