2,123 research outputs found

    Stability of the Bragg glass phase in a layered geometry

    Full text link
    We study the stability of the dislocation-free Bragg glass phase in a layered geometry consisting of coupled parallel planes of d=1+1 vortex lines lying within each plane, in the presence of impurity disorder. Using renormalization group, replica variational calculations and physical arguments we show that at temperatures T<TGT<T_G the 3D Bragg glass phase is always stable for weak disorder. It undergoes a weakly first order transition into a decoupled 2D vortex glass upon increase of disorder.Comment: RevTeX. Submitted to EP

    Dephasing due to nonstationary 1/f noise

    Get PDF
    Motivated by recent experiments with Josephson qubits we propose a new phenomenological model for 1/f noise due to collective excitations of interacting defects in the qubit's environment. At very low temperatures the effective dynamics of these collective modes are very slow leading to pronounced non-Gaussian features and nonstationarity of the noise. We analyze the influence of this noise on the dynamics of a qubit in various regimes and at different operation points. Remarkable predictions are absolute time dependences of a critical coupling and of dephasing in the strong coupling regime.Comment: 4 pages, 2 figures, to be published in the proceedings of the Vth Rencontres de Moriond in Mesoscopic Physic

    Dephasing by a nonstationary classical intermittent noise

    Get PDF
    We consider a new phenomenological model for a 1/fÎŒ1/f^{\mu} classical intermittent noise and study its effects on the dephasing of a two-level system. Within this model, the evolution of the relative phase between the ∣±>|\pm> states is described as a continuous time random walk (CTRW). Using renewal theory, we find exact expressions for the dephasing factor and identify the physically relevant various regimes in terms of the coupling to the noise. In particular, we point out the consequences of the non-stationarity and pronounced non-Gaussian features of this noise, including some new anomalous and aging dephasing scenarii.Comment: Submitted to Phys. Rev.

    Cross-Over between universality classes in a magnetically disordered metallic wire

    Full text link
    In this article we present numerical results of conduction in a disordered quasi-1D wire in the possible presence of magnetic impurities. Our analysis leads us to the study of universal properties in different conduction regimes such as the localized and metallic ones. In particular, we analyse the cross-over between universality classes occurring when the strength of magnetic disorder is increased. For this purpose, we use a numerical Landauer approach, and derive the scattering matrix of the wire from electron's Green's function.Comment: Final version, accepted for publication in New Journ. of Physics, 27 pages, 28 figures. Replaces the earlier shorter preprint arXiv:0910.427

    Absence of Two-Dimensional Bragg Glasses

    Full text link
    The stability to dislocations of the elastic phase, or ``Bragg glass'', of a randomly pinned elastic medium in two dimensions is studied using the minimum-cost-flow algorithm for a disordered fully-packed loop model. The elastic phase is found to be unstable to dislocations due to the quenched disorder. The energetics of dislocations are discussed within the framework of renormalization group predictions as well as in terms of a domain wall picture.Comment: 5 pages, REVTEX, 3 figures included. Further information can be obtained from [email protected]

    Glassy trapping of manifolds in nonpotential random flows

    Full text link
    We study the dynamics of polymers and elastic manifolds in non potential static random flows. We find that barriers are generated from combined effects of elasticity, disorder and thermal fluctuations. This leads to glassy trapping even in pure barrier-free divergenceless flows vf→0∌fϕv {f \to 0}{\sim} f^\phi (ϕ>1\phi > 1). The physics is described by a new RG fixed point at finite temperature. We compute the anomalous roughness R∌LζR \sim L^\zeta and dynamical t∌Lzt\sim L^z exponents for directed and isotropic manifolds.Comment: 5 pages, 3 figures, RevTe
    • 

    corecore