16,180 research outputs found

    Polymeric filament thinning and breakup in microchannels

    Get PDF
    The effects of elasticity on filament thinning and breakup are investigated in microchannel cross flow. When a viscous solution is stretched by an external immiscible fluid, a low 100 ppm polymer concentration strongly affects the breakup process, compared to the Newtonian case. Qualitatively, polymeric filaments show much slower evolution, and their morphology features multiple connected drops. Measurements of filament thickness show two main temporal regimes: flow- and capillary-driven. At early times both polymeric and Newtonian fluids are flow-driven, and filament thinning is exponential. At later times, Newtonian filament thinning crosses over to a capillary-driven regime, in which the decay is algebraic. By contrast, the polymeric fluid first crosses over to a second type of flow-driven behavior, in which viscoelastic stresses inside the filament become important and the decay is again exponential. Finally, the polymeric filament becomes capillary-driven at late times with algebraic decay. We show that the exponential flow thinning behavior allows a novel measurement of the extensional viscosities of both Newtonian and polymeric fluids.Comment: 7 pages, 7 figure

    Detection of local-moment formation using the resonant interaction between coupled quantum wires

    Full text link
    We study the influence of many-body interactions on the transport characteristics of a novel device structure, consisting of a pair of quantum wires that are coupled to each other by means of a quantum dot. Under conditions where a local magnetic moment is formed in one of the wires, we show that tunnel coupling to the other gives rise to an associated peak in its density of states, which can be detected directly in a conductance measurement. Our theory is therefore able to account for the key observations in the recent study of T. Morimoto et al. [Appl. Phys. Lett. {\bf 82}, 3952 (2003)], and demonstrates that coupled quantum wires may be used as a system for the detection of local magnetic-moment formation

    Electron Dynamics in a Coupled Quantum Point Contact Structure with a Local Magnetic Moment

    Full text link
    We develop a theoretical model for the description of electron dynamics in coupled quantum wires when the local magnetic moment is formed in one of the wires. We employ a single-particle Hamiltonian that takes account of the specific geometry of potentials defining the structure as well as electron scattering on the local magnetic moment. The equations for the wave functions in both wires are derived and the approach for their solution is discussed. We determine the transmission coefficient and conductance of the wire having the local magnetic moment and show that our description reproduces the experimentally observed features.Comment: Based on work presented at 2004 IEEE NTC Quantum Device Technology Worksho

    Electron transport through quantum wires and point contacts

    Get PDF
    We have studied quantum wires using the Green's function technique and the density-functional theory, calculating the electronic structure and the conductance. All the numerics are implemented using the finite-element method with a high-order polynomial basis. For short wires, i.e. quantum point contacts, the zero-bias conductance shows, as a function of the gate voltage and at a finite temperature, a plateau at around 0.7G_0. (G_0 = 2e^2/h is the quantum conductance). The behavior, which is caused in our mean-field model by spontaneous spin polarization in the constriction, is reminiscent of the so-called 0.7-anomaly observed in experiments. In our model the temperature and the wire length affect the conductance-gate voltage curves in the same way as in the measured data.Comment: 8 page

    Dynamics of short polymer chains in solution

    Full text link
    We present numerical and analytical results describing the effect of hydrodynamic interactions on the dynamics of a short polymer chain in solution. A molecular dynamics algorithm for the polymer is coupled to a direct simulation Monte Carlo algorithm for the solvent. We give an explicit expression for the velocity autocorrelation function of the centre of mass of the polymer which agrees well with numerical results if Brownian dynamics, hydrodynamic correlations and sound wave scattering are included

    Thermodiffusion in model nanofluids by molecular dynamics simulations

    Full text link
    In this work, a new algorithm is proposed to compute single particle (infinite dilution) thermodiffusion using Non-Equilibrium Molecular Dynamics simulations through the estimation of the thermophoretic force that applies on a solute particle. This scheme is shown to provide consistent results for simple Lennard-Jones fluids and for model nanofluids (spherical non-metallic nanoparticles + Lennard-Jones fluid) where it appears that thermodiffusion amplitude, as well as thermal conductivity, decrease with nanoparticles concentration. Then, in nanofluids in the liquid state, by changing the nature of the nanoparticle (size, mass and internal stiffness) and of the solvent (quality and viscosity) various trends are exhibited. In all cases the single particle thermodiffusion is positive, i.e. the nanoparticle tends to migrate toward the cold area. The single particle thermal diffusion 2 coefficient is shown to be independent of the size of the nanoparticle (diameter of 0.8 to 4 nm), whereas it increases with the quality of the solvent and is inversely proportional to the viscosity of the fluid. In addition, this coefficient is shown to be independent of the mass of the nanoparticle and to increase with the stiffness of the nanoparticle internal bonds. Besides, for these configurations, the mass diffusion coefficient behavior appears to be consistent with a Stokes-Einstein like law

    The effects of organic farming on the soil physical environment

    Get PDF
    The aim of this research was to investigate the effects of organic farming practices on the development of soil physical properties, and in particular, soil structure in comparison with conventional agricultural management. The soil structure of organically and conventionally managed soils at one site was compared in a quantitative manner at different scales of observations using image analysis. Key soil physical and chemical properties were measured as well as the pore fractal geometry to characterise pore roughness. Organically managed soils had higher organic matter content and provided a more stable soil structure than conventionally managed soils. The higher porosity (%) at the macroscale in soil under conventional management was due to fewer larger pores while mesoand microscale porosity was found to be greater under organic management. Organically managed soils typically provided spatially well distributed pores of all sizes and of greater roughness compared to those under conventional management. These variations in the soil physical environment are likely to impact significantly on the performance of these soils for a number of key processes such as crop establishment and water availabilit

    Angular velocity distribution of a granular planar rotator in a thermalized bath

    Full text link
    The kinetics of a granular planar rotator with a fixed center undergoing inelastic collisions with bath particles is analyzed both numerically and analytically by means of the Boltzmann equation. The angular velocity distribution evolves from quasi-gaussian in the Brownian limit to an algebraic decay in the limit of an infinitely light particle. In addition, we compare this model with a planar rotator with a free center. We propose experimental tests that might confirm the predicted behaviors.Comment: 10 Pages, 9 Figure
    • …
    corecore