5,182 research outputs found
Self-oscillating control methods for the LCC current-output resonant converter
Abstract—A strategy for self-oscillating control of LCC current-output resonant converters, is presented, based on varying the phase-angle between the fundamental of the input voltage and current. Unlike other commonly employed control methodologies,the proposed technique is shown to provide a convenient, linear system input-output characteristic suitable for the design of regulators.
The method is shown to have a similar effect as controlling
the dc-link supply voltage, in terms of output-voltage/current control. The LCC converter variant is used as an application focus for demonstrating the presented techniques, with simulation and experimental measurements from a prototype converter being used to show the practical benefits. Third-order small and large-signal models are developed, and employed in the formulation of robust output-voltage and output-current control schemes.
However, notably, the presented techniques are ultimately generic and readily applicable to other resonant converter variants
The Construction and General Properties of a Brush Cathode Discharge
Construction of brush cathode direct current glow discharge tube and general properties measured by Langmuir prob
Design of an LCC current-output resonant converter for use as a constant current source
A methodology for the design of LCC resonant current-source converters, is presented. Unlike previous techniques, the resulting converter provides near constant steady-state output current over an extended load range when excited at the resonant frequency, through use of a self-oscillating controlle
Normalized analysis and design of LCC resonant converters
Abstract—A normalization of the LCC voltage-output resonant
converter performance characteristics, in terms of the tank gain at resonance and the parallel-to-series-capacitor ratio, is presented. The resulting description is subsequently used for the derivation of a design procedure that incorporates the effects of diode losses and the finite charge/discharge time of the parallel capacitor. Unlike previously reported techniques, the resulting normalized behavior of the converter is used to identify design regions to facilitate a reduction in component electrical stresses, and the use of harmonics to transfer real power. Consideration of the use of preferred component values is also given. The underlying methodology is ultimately suitable for incorporation into a software suite
for use as part of a rapid interactive design tool. Both simulation results and experimental measurements from a prototype converter are included to demonstrate the attributes of the proposed analysis and design methodologies
Recommended from our members
Impact Absorbent Rapid Manufactured Structures (IARMS)
Rapid Manufacturing (RM) is increasingly becoming a viable manufacturing process due
to dramatic advantages that it facilitates in the area of design complexity. Through the
exploration of the design freedom afforded by RM, this paper introduces the concept and initial
research surrounding Impact Absorbent Rapid Manufactured Structures (IARMS), with an
application in sports personal protective equipment (PPE). Designs are based on the cellular
structure of foams; the inherent advantages of the cellular structure are used as a basis to create
IARMS that have the potential to be optimised for a specific impact absorbent response. The
paper provides some initial results from compression testingMechanical Engineerin
Analysis of CLL voltage-output resonant converters using describing functions
A new ac equivalent circuit for the CLL voltage output resonant converter is presented, that offers improved
accuracy compared with traditional FMA-based techniques. By employing describing function techniques, the nonlinear interaction of the parallel inductor, rectifier and load is replaced by a complex impedance, thereby facilitating the use of ac equivalent circuit analysis methodologies. Moreover, both continuous and discontinuous rectifier-current operating conditions are addressed. A generic normalized analysis of the converter is also presented. To further aid the designer, error maps are used to demonstrate the boundaries for providing accurate behavioral predictions. A comparison
of theoretical results with those from simulation studies and experimental measurements from a prototype converter, are also included as a means of clarifying the benefits of the proposed techniques
Undulation instability in a bilayer lipid membrane due to electric field interaction with lipid dipoles
Bilayer lipid membranes [BLMs] are an essential component of all biological
systems, forming a functional barrier for cells and organelles from the
surrounding environment. The lipid molecules that form membranes contain both
permanent and induced dipoles, and an electric field can induce the formation
of pores when the transverse field is sufficiently strong (electroporation).
Here, a phenomenological free energy is constructed to model the response of a
BLM to a transverse static electric field. The model contains a continuum
description of the membrane dipoles and a coupling between the headgroup
dipoles and the membrane tilt. The membrane is found to become unstable through
buckling modes, which are weakly coupled to thickness fluctuations in the
membrane. The thickness fluctuations, along with the increase in interfacial
area produced by membrane buckling, increase the probability of localized
membrane breakdown, which may lead to pore formation. The instability is found
to depend strongly on the strength of the coupling between the dipolar
headgroups and the membrane tilt as well as the degree of dipolar ordering in
the membrane.Comment: 29 pages 8 fig
Modulational instability of spatially broadband nonlinear optical pulses in four-state atomic systems
The modulational instability of broadband optical pulses in a four-state
atomic system is investigated. In particular, starting from a recently derived
generalized nonlinear Schr\"odinger equation, a wave-kinetic equation is
derived. A comparison between coherent and random phase wave states is made. It
is found that the spatial spectral broadening can contribute to the nonlinear
stability of ultra-short optical pulses. In practical terms, this could be
achieved by using random phase plate techniques.Comment: 9 pages, 3 figures, to appear in Phys. Rev.
The origin of the red luminescence in Mg-doped GaN
Optically-detected magnetic resonance (ODMR) and positron annihilation
spectroscopy (PAS) experiments have been employed to study magnesium-doped GaN
layers grown by metal-organic vapor phase epitaxy. As the Mg doping level is
changed, the combined experiments reveal a strong correlation between the
vacancy concentrations and the intensity of the red photoluminescence band at
1.8 eV. The analysis provides strong evidence that the emission is due to
recombination in which electrons both from effective mass donors and from
deeper donors recombine with deep centers, the deep centers being
vacancy-related defects.Comment: 4 pages, 3 figure
- …