28,762 research outputs found
Hyperon ordering in neutron star matter
We explore the possible formation of ordered phases in neutron star matter.
In the framework of a quantum hadrodynamics model where neutrons, protons and
Lambda hyperons interact via the exchange of mesons, we compare the energy of
the usually assumed uniform, liquid phase, to that of a configuration in which
di-lambda pairs immersed in an uniform nucleon fluid are localized on the nodes
of a regular lattice. The confining potential is calculated self-consistently
as resulting from the combined action of the nucleon fluid and the other
hyperons, under the condition of beta equilibrium. We are able to obtain stable
ordered phases for some reasonable sets of values of the model parameters. This
could have important consequences on the structure and cooling of neutron
stars.Comment: 6 pages, 2 figures. To appear in the proceedings of the 4th Catania
Relativistic Ion Studies: Exotic Clustering (CRIS 2002), Catania, Italy,
10-14 Jun 200
Ehrenfest dynamics is purity non-preserving: a necessary ingredient for decoherence
We discuss the evolution of purity in mixed quantum/classical approaches to
electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it
is impossible to exactly determine initial conditions for a realistic system,
we choose to work in the statistical Ehrenfest formalism that we introduced in
Ref. 1. From it, we develop a new framework to determine exactly the change in
the purity of the quantum subsystem along the evolution of a statistical
Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest
statistical dynamics makes a system with more than one classical trajectory and
an initial quantum pure state become a quantum mixed one. We prove this
numerically showing how the evolution of purity depends on time, on the
dimension of the quantum state space , and on the number of classical
trajectories of the initial distribution. The results in this work open new
perspectives for studying decoherence with Ehrenfest dynamics.Comment: Revtex 4-1, 14 pages, 2 figures. Final published versio
Quantum control of the motional states of trapped ions through fast switching of trapping potentials
We propose a new scheme for supplying voltages to the electrodes of
microfabricated ion traps, enabling access to a regime in which changes to the
trapping potential are made on timescales much shorter than the period of the
secular oscillation frequencies of the trapped ions. This opens up
possibilities for speeding up the transport of ions in segmented ion traps and
also provides access to control of multiple ions in a string faster than the
Coulomb interaction between them. We perform a theoretical study of ion
transport using these methods in a surface-electrode trap, characterizing the
precision required for a number of important control parameters. We also
consider the possibilities and limitations for generating motional state
squeezing using these techniques, which could be used as a basis for
investigations of Gaussian-state entanglement.Comment: Accepted by New Journal of Physic
Hyperonic crystallization in hadronic matter
Published in Hadrons, Nuclei and Applications, World Scientific, Singapore,
Proc.of the Conference Bologna2000. Structure of the Nucleus at the Dawn of the
Century, G. Bonsignori, M. Bruno, A. Ventura, D. Vretenar Editors, pag. 319.Comment: 4 pages, 2figure
- …