194 research outputs found
Systematic review of fatty acid composition of human milk from mothers of preterm compared to full-term infants
Background: Fatty acid composition of human milk serves as guidance for the composition of infant formulae. The aim of the study was to systematically review data on the fatty acid composition of human milk of mothers of preterm compared to full-term infants. Methods: An electronic literature search was performed in English (Medline and Medscape) and German (SpringerLink) databases and via the Google utility. Fatty acid compositional data for preterm and fullterm human milk were converted to differences between means and 95% confidence intervals. Results: We identified five relevant studies publishing direct comparison of fatty acid composition of preterm versus full-term human milk. There were no significant differences between the values of the principal saturated and monounsaturated fatty acids. In three independent studies covering three different time points of lactation, however, docosahexaenoic acid (DHA) values were significantly higher in milk of mothers of preterm as compared to those of full-term infants, with an extent of difference considered nutritionally relevant. Conclusion: Higher DHA values in preterm than in full-term human milk underlines the importance of using own mother's milk for feeding preterm babies and raises the question whether DHA contents in preterm formulae should be higher than in formulae for full-term infants. Copyright (c) 2008 S. Karger AG, Basel
Nutrition issues in Codex: health claims, nutrient reference values and WTO agreements: a conference report
BACKGROUND: Codex documents may be used as educational and consensus materials for member governments. Also, the WTO SPS Agreement recognizes Codex as the presumptive international authority on food issues. Nutrient bioavailability is a critical factor in determining the ability of nutrients to provide beneficial effects. Bioavailability also influences the quantitative dietary requirements that are the basis of nutrient intake recommendations and NRVs. HEALTH CLAIMS: Codex, EFSA and some national regulatory authorities have established guidelines or regulations that will permit several types of health claims. The scientific basis for claims has been established by the US FDA and EFSA, but not yet by Codex. Evidence-based nutrition differs from evidence-based medicine, but the differences are only recently gaining recognition. Health claims on foods may provide useful information to consumers, but many will interpret the information to mean that they can rely upon the food or nutrient to eliminate a disease risk. NUTRIENT REFERENCE VALUES: NRVs are designed to provide a quantitative basis for comparing the nutritive values of foods, helping to illustrate how specific foods fit into the overall diet. The INL-98 and the mean of adult male and female values provide NRVs that are sufficient when used as targets for individual intakes by most adults. WORLD TRADE ORGANIZATION AGREEMENTS: WTO recognizes Codex as the primary international authority on food issues. Current regulatory schemes based on recommended dietary allowances are trade restrictive. A substantial number of decisions by the EFSA could lead to violation of WTO agreements
Scientific opinion on the tolerable upper intake level for iron
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the tolerable upper intake level (UL) for iron. Systematic reviews were conducted to identify evidence regarding high iron intakes and risk of chronic diseases, adverse gastrointestinal effects and adverse effects of iron supplementation in infancy, young childhood and pregnancy. It is established that systemic iron overload leads to organ toxicity, but no UL could be established. The only indicator for which a dose–response could be established was black stools, which reflect the presence of large amounts of unabsorbed iron in the gut. This is a conservative endpoint among the chain of events that may lead to systemic iron overload but is not adverse per se. Based on interventions in which black stools did not occur at supplemental iron intakes of 20–25 mg/day (added to a background intake of 15 mg/day), a safe level of intake for iron of 40 mg/day for adults (including pregnant and lactating women) was established. Using allometric scaling (body weight0.75), this value was scaled down to children and adolescents and safe levels of intakes between 10 mg/day (1–3 years) and 35 mg/day (15–17 years) were derived. For infants 7–11 months of age who have a higher iron requirement than young children, allometric scaling was applied to the supplemental iron intakes (i.e. 25 mg/day) and resulted in a safe level of supplemental iron intake of 5 mg/day. This value was extended to 4–6 month-old infants and refers to iron intakes from fortified foods and food supplements, not from infant and follow-on formulae. The application of the safe level of intake is more limited than a UL because the intake level at which the risk of adverse effects starts to increase is not defined
Prevalence of anemia and deficiency of iron, folic acid, and zinc in children younger than 2 years of age who use the health services provided by the Mexican Social Security Institute
<p>Abstract</p> <p>Background</p> <p>In Mexico, as in other developing countries, micronutrient deficiencies are common in infants between 6 and 24 months of age and are an important public health problem. The objective of this study was to determine the prevalence of anemia and of iron, folic acid, and zinc deficiencies in Mexican children under 2 years of age who use the health care services provided by the Mexican Institute for Social Security (IMSS).</p> <p>Methods</p> <p>A nationwide survey was conducted with a representative sample of children younger than 2 years of age, beneficiaries, and users of health care services provided by IMSS through its regular regimen (located in urban populations) and its Oportunidades program (services offered in rural areas). A subsample of 4,955 clinically healthy children was studied to determine their micronutrient status. A venous blood sample was drawn to determine hemoglobin, serum ferritin, percent of transferrin saturation, zinc, and folic acid. Descriptive statistics include point estimates and 95% confidence intervals for the sample and projections for the larger population from which the sample was drawn.</p> <p>Results</p> <p>Twenty percent of children younger than 2 years of age had anemia, and 27.8% (rural) to 32.6% (urban) had iron deficiency; more than 50% of anemia was not associated with low ferritin concentrations. Iron stores were more depleted as age increased. Low serum zinc and folic acid deficiencies were 28% and 10%, respectively, in the urban areas, and 13% and 8%, respectively, in rural areas. The prevalence of simultaneous iron and zinc deficiencies was 9.2% and 2.7% in urban and rural areas. Children with anemia have higher percentages of folic acid deficiency than children with normal iron status.</p> <p>Conclusion</p> <p>Iron and zinc deficiencies constitute the principal micronutrient deficiencies in Mexican children younger than 2 years old who use the health care services provided by IMSS. Anemia not associated with low ferritin values was more prevalent than iron-deficiency anemia. The presence of micronutrient deficiencies at this early age calls for effective preventive public nutrition programs to address them.</p
Modulation of purinergic signaling by NPP-type ectophosphodiesterases
Extracellular nucleotides can elicit a wide array of cellular responses by binding to specific purinergic receptors. The level of ectonucleotides is dynamically controlled by their release from cells, synthesis by ectonucleoside diphosphokinases and ectoadenylate kinases, and hydrolysis by ectonucleotidases. One of the four structurally unrelated families of ectonucleotidases is represented by the NPP-type ectophosphodiesterases. Three of the seven members of the NPP family, namely NPP1–3, are known to hydrolyze nucleotides. The enzymatic action of NPP1–3 (in)directly results in the termination of nucleotide signaling, the salvage of nucleotides and/or the generation of new messengers like ADP, adenosine or pyrophosphate. NPP2 is unique in that it hydrolyzes both nucleotides and lysophospholipids and, thereby, generates products that could synergistically promote cell motility. We review here the enzymatic properties of NPPs and analyze current evidence that links their nucleotide-hydrolyzing capability to epithelial and neural functions, the immune response and cell motility
- …