1,209 research outputs found
Inferring Core-Collapse Supernova Physics with Gravitational Waves
Stellar collapse and the subsequent development of a core-collapse supernova
explosion emit bursts of gravitational waves (GWs) that might be detected by
the advanced generation of laser interferometer gravitational-wave
observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from
core-collapse supernovae encode information on the intricate multi-dimensional
dynamics at work at the core of a dying massive star and may provide direct
evidence for the yet uncertain mechanism driving supernovae in massive stars.
Recent multi-dimensional simulations of core-collapse supernovae exploding via
the neutrino, magnetorotational, and acoustic explosion mechanisms have
predicted GW signals which have distinct structure in both the time and
frequency domains. Motivated by this, we describe a promising method for
determining the most likely explosion mechanism underlying a hypothetical GW
signal, based on Principal Component Analysis and Bayesian model selection.
Using simulated Advanced LIGO noise and assuming a single detector and linear
waveform polarization for simplicity, we demonstrate that our method can
distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc)
and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc.
Furthermore, we show that we can differentiate between models for rotating
accretion-induced collapse of massive white dwarfs and models of rotating iron
core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure
Results from the First Science Run of the ZEPLIN-III Dark Matter Search Experiment
The ZEPLIN-III experiment in the Palmer Underground Laboratory at Boulby uses
a 12kg two-phase xenon time projection chamber to search for the weakly
interacting massive particles (WIMPs) that may account for the dark matter of
our Galaxy. The detector measures both scintillation and ionisation produced by
radiation interacting in the liquid to differentiate between the nuclear
recoils expected from WIMPs and the electron recoil background signals down to
~10keV nuclear recoil energy. An analysis of 847kg.days of data acquired
between February 27th 2008 and May 20th 2008 has excluded a WIMP-nucleon
elastic scattering spin-independent cross-section above 8.1x10(-8)pb at
55GeV/c2 with a 90% confidence limit. It has also demonstrated that the
two-phase xenon technique is capable of better discrimination between electron
and nuclear recoils at low-energy than previously achieved by other xenon-based
experiments.Comment: 12 pages, 17 figure
Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Science Run
Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [ – 5, + 1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc
First search for gravitational waves from the youngest known neutron star
We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia
A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser
Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz
and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and
for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search
frequencies, we set 95% confidence upper limits of (0.7–1.2) × 10^(−24) on the intrinsic gravitational-wave
strain, (0.4–4) × 10^(−4) on the equatorial ellipticity of the neutron star, and 0.005–0.14 on the amplitude of
r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy
conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes.
This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude
Quenching Factor for Low Energy Nuclear Recoils in a Plastic Scintillator
Plastic scintillators are widely used in industry, medicine and scientific
research, including nuclear and particle physics. Although one of their most
common applications is in neutron detection, experimental data on their
response to low-energy nuclear recoils are scarce. Here, the relative
scintillation efficiency for neutron-induced nuclear recoils in a
polystyrene-based plastic scintillator (UPS-923A) is presented, exploring
recoil energies between 125 keV and 850 keV. Monte Carlo simulations,
incorporating light collection efficiency and energy resolution effects, are
used to generate neutron scattering spectra which are matched to observed
distributions of scintillation signals to parameterise the energy-dependent
quenching factor. At energies above 300 keV the dependence is reasonably
described using the semi-empirical formulation of Birks and a kB factor of
(0.014+/-0.002) g/MeVcm^2 has been determined. Below that energy the measured
quenching factor falls more steeply than predicted by the Birks formalism.Comment: 8 pages, 9 figure
First observation of the KS->pi0 gamma gamma decay
Using the NA48 detector at the CERN SPS, 31 KS->pi0 gamma gamma candidates
with an estimated background of 13.7 +- 3.2 events have been observed. This
first observation leads to a branching ratio of BR(KS->pi0 gamma gamma) = (4.9
+- 1.6(stat) +- 0.9(syst)) x 10^-8 in agreement with Chiral Perturbation theory
predictions.Comment: 10 pages, 4 figures submitted to Phys. Lett.
- …