213 research outputs found

    Modeling the dynamics of glacial cycles

    Full text link
    This article is concerned with the dynamics of glacial cycles observed in the geological record of the Pleistocene Epoch. It focuses on a conceptual model proposed by Maasch and Saltzman [J. Geophys. Res.,95, D2 (1990), pp. 1955-1963], which is based on physical arguments and emphasizes the role of atmospheric CO2 in the generation and persistence of periodic orbits (limit cycles). The model consists of three ordinary differential equations with four parameters for the anomalies of the total global ice mass, the atmospheric CO2 concentration, and the volume of the North Atlantic Deep Water (NADW). In this article, it is shown that a simplified two-dimensional symmetric version displays many of the essential features of the full model, including equilibrium states, limit cycles, their basic bifurcations, and a Bogdanov-Takens point that serves as an organizing center for the local and global dynamics. Also, symmetry breaking splits the Bogdanov-Takens point into two, with different local dynamics in their neighborhoods

    A 65 k.y. time series from sediment-hosted glasses reveals rapid transitions in ocean ridge magmas

    Get PDF
    Studies of ocean ridge magmatism have been hampered by the difficulty in constructing time-series data over more than a few thousand years. Sediment rapidly covers newly formed ocean crust, and older rocks, even when recovered from fault scarps, cannot be dated accurately. Ridge eruptions, however, disperse pyroclastic glass over distances as far as 5 km, and these glasses have been shown to persist for thousands of years in on-ridge sediment push cores. Here we present data on such glasses from a piston core that impacted basement in much older (600 ka) sediment. The age of deposition was determined using established stratigraphic methods to date the host sediment, yielding an average sample resolution of a few thousand years and a continuous 65 k.y. time series. The new time-series data show systematic temporal variations in magma compositions related to a change to the dynamics of crustal storage, which led to greater extents of pre-eruptive differentiation. Shortly thereafter was a small but discernable shift toward more enriched primary melt compositions. These events coincide with the onset of enhanced crustal production, previously identified using seismic data and interpreted to reflect the capture of a hotspot by the ridge. These results show the long-term preservation of pyroclastic glasses and suggest that the construction of high-resolution volcanic stratigraphy over a million years or more may be possible at ocean ridges, using multiple piston cores that impact basement. Sediment-hosted glasses have the potential to transform ocean ridges from the volcanic setting with the worst time-series data to that with the best

    Algorithm to estimate the Hurst exponent of high-dimensional fractals

    Full text link
    We propose an algorithm to estimate the Hurst exponent of high-dimensional fractals, based on a generalized high-dimensional variance around a moving average low-pass filter. As working examples, we consider rough surfaces generated by the Random Midpoint Displacement and by the Cholesky-Levinson Factorization algorithms. The surrogate surfaces have Hurst exponents ranging from 0.1 to 0.9 with step 0.1, and different sizes. The computational efficiency and the accuracy of the algorithm are also discussed

    Obliquity pacing of the late Pleistocene glacial terminations

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 434 (2005): 491-494, doi:10.1038/nature03401.The timing of glacial/interglacial cycles at intervals of about 100,000 yr (100 kyr) is commonly attributed to control by Earth orbital configuration variations. This “pacemaker” hypothesis has inspired many models, variously depending upon Earth obliquity, orbital eccentricity, and precessional fluctuations, with the latter usually emphasized. A contrasting hypothesis is that glacial cycles arise primarily because of random internal climate variability. Progress requires distinguishing between the more than 30 proposed models of the late Pleistocene glacial variations. Here we present a formal test of the pacemaker hypothesis, focusing on the rapid deglaciation events known as terminations. The null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level. In contrast, for eccentricity and precession, the corresponding null-hypotheses cannot be rejected. The simplest inference, consistent with the observations, is that ice-sheets terminate every second (80 kyr) or third (120 kyr) obliquity cycle — at times of high obliquity — and similar to the original Milankovitch assumption. Hypotheses not accounting for the obliquity pacing are unlikely to be correct. Both stochastic and deterministic variants of a simple obliquity-paced model describe the observations.PH is supported by the NOAA Postdoctoral Program in Climate and Global Change and CW in part by the National Ocean Partnership Program (ECCO)

    Temperature variability implies greater economic damages from climate change

    Get PDF
    A number of influential assessments of the economic cost of climate change rely on just a small number of coupled climate–economy models. A central feature of these assessments is their accounting of the economic cost of epistemic uncertainty—that part of our uncertainty stemming from our inability to precisely estimate key model parameters, such as the Equilibrium Climate Sensitivity. However, these models fail to account for the cost of aleatory uncertainty—the irreducible uncertainty that remains even when the true parameter values are known. We show how to account for this second source of uncertainty in a physically well-founded and tractable way, and we demonstrate that even modest variability implies trillions of dollars of previously unaccounted for economic damages

    Time-dependent response of a zonally averaged ocean–atmosphere–sea ice model to Milankovitch forcing

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer-Verlag for personal use, not for redistribution. The definitive version was published in Climate Dynamics 6 (2010): 763-779, doi:10.1007/s00382-010-0790-6.An ocean-atmosphere-sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5-3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (i) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (ii) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N-65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point.This work was supported by an NSERC Discovery Grant awarded to L.A.M. We also thank GEC3 for a Network Grant
    • …
    corecore