445 research outputs found

    Singular Graphene Metasurfaces

    Get PDF
    The spatial tunability of the electron density in graphene enables the dynamic engineering of metasurfaces in the form of conductivity gratings, which can bridge the momentum gap between incident radiation and surface plasmons. Here, we discuss singular graphene metasurfaces, whose conductivity is strongly suppressed at the grating valleys. By analytically characterising their plasmonic response via transformation optics, we first review the physical principles underlying these structures, which were recently found to exhibit broadband, tunable THz absorption. We characterise the spectrum with different common substrates and then move to study in further detail how conductivity gratings may be finely tuned by placing an array of charged gold nanowires at sub-micron distance from the graphene

    Photon localisation and Bloch symmetry breaking in luminal gratings

    Get PDF
    In gratings travelling at nearly the velocity of light a symmetry breaking transition is observed between free-flowing fluid-like Bloch waves observed at lower grating velocities and, at luminal velocities, condensed, localised states of light captured in each period of the grating and locked to its velocity. We introduce a new technique for calculating in this regime and use it to study the transition in detail shedding light on the critical exponents, and the periodic oscillations in transmitted intensity seen in the pre-transition regime.Comment: 11 pages, 5 figure

    Probing graphene’s nonlocality with singular metasurfaces

    Get PDF
    Singular graphene metasurfaces, conductivity gratings realized by periodically suppressing the local doping level of a graphene sheet, were recently proposed to efficiently harvest THz light and couple it to surface plasmons over broad absorption bands, thereby achieving remarkably high field enhancement. However, the large momentum wavevectors thus attained are sensitive to the nonlocal behavior of the underlying electron liquid. Here, we extend the theory of singular graphene metasurfaces to account for the full nonlocal optical response of graphene and discuss the resulting impact on the plasmon resonance spectrum. Finally, we propose a simple local-analogue model that is able to reproduce the effect of nonlocality in local-response calculations by introducing a constant conductivity offset, which could prove a valuable tool in the modeling of more complex experimental graphene-based platforms

    Effects of impurities on the ice microstructure of Monte Perdido Glacier, Central Pyrenees, NE Spain

    Get PDF
    Monte Perdido Glacier, located in the central Pyrenees, is one of the southernmost glaciers in Europe. Due to climate change, this glacier is suffering an accelerated mass loss, especially in the last decades. If the current trends persist, this glacier is expected to disappear in the next 50 years. As part of the efforts of the scientific community to increase the knowledge about this glacier, this research presents the first microstructural characterization of the Monte Perdido Glacier, focused on a high-impurity concentration segment that belongs to an ice core drilled in 2017. The results reveal the ice has a layering defined by air bubbles and non-soluble impurities. The bubble-defined layering exhibits features of both a primary (sedimentary) and a secondary (strain-induced) origin. We found a clear inverse correspondence between the particle concentration and the grains' size and roundness index. A preliminary micro-Raman characterization of the particles shows the occurrence of atacamite, anatase (likely related to ancient mining activities in the vicinity of the glacier) and quartz. The latter could be an indicator of mineral dust, probably suggesting the arrival of dust-laden air masses from the north of the African continent.This research was supported by the Spanish Government through the María de Maeztu excellence accreditation 2018–2022 (MDM-2017-0714) and by the Spanish Agencia Estatal de Investigación (AEI Spain) through the projects PaleoICE EXPLORA (CGL2015-72167-EXP) and iMechPro (RTI2018-100696-B-I00). NGS acknowledges a PhD grant from the Basque Government (PRE-2018-1-0116). We thank the directorate of the Parque Nacional de Ordesa y Monte Perdido (Spain) for permission to investigate the Monte Perdido glacier. We also thank Ibai Rico ( https://basquemountainguides.com/ , UPV/EHU), Maria Leunda (UPV/EHU), and Juan Ignacio López-Moreno (IPE-CSIC) for their help during the sampling of the MP1 ice core, and Pedro Sanchez Navarrete (IPE-CSIC) for transporting the ice samples. Finally, we would like to extend our appreciation to the anonymous reviewers, the Scientific Editor, Christine Hvidberg, and the Chief Editor, Hester Jiskoot, for their valuable comments on this manuscript

    First principles study of topological invariants of Weyl points in continuous media

    Full text link
    In recent years there has been a great interest in topological photonics and protected edge states. Here, we present a first principles method to compute topological invariants of three-dimensional gapless phases. Our approach allows to calculate the topological charges of Weyl points through the efficient numerical computation of gap Chern numbers, which relies solely on the photonic Green's function of the system. We particularize the framework to the Weyl points that are found to emerge in a magnetized plasma due to the breaking of time reversal symmetry. We discuss the relevance of modelling nonlocality when considering the topological properties of continuous media such as the magnetized plasma. We find that for some of the considered material models the charge of the Weyl point can be expressed in terms of a difference of the gap Chern numbers of two-dimensional material subcomponents. Our theory may be extended to other three-dimensional topological phases, or to Floquet systems.Comment: 13 pages, 11 figure

    Gain in time dependent media - a new mechanism

    Get PDF
    Time dependent systems do not in general conserve energy invalidating much of the theory developed for static systems and turning our intuition on its head. This is particularly acute in luminal space time crystals where the structure moves at or close to the velocity of light. Conventional Bloch wave theory no longer applies, energy grows exponentially with time, and a new perspective is required to understand the phenomenology. In this letter we identify a new mechanism for amplification: the compression of lines of force that are nevertheless conserved in number

    Nitric oxide synthase-independent release of nitric oxide induced by KCl in the perfused mesenteric bed of the rat

    Get PDF
    The aim of the present study was to test whether the contractile responses elicited by KCl in the rat mesenteric bed are coupled to the release of nitric oxide (NO). Contractions induced by 70 mM KCl were coincident with the release of NO to the perfusate. The in vitro exposure to the nitric oxide synthase (NOS) inhibitor L-N(ω)-nitro-L-arginine methyl ester, L-NAME (1-100 μM) potentiated the vascular responses to 70 mM KCl and, unexpectedly, increased the KCl-stimulated release of NO. Moreover, even after the chronic treatment with L-NAME (70 mg/kg/day during 4 weeks), the KCl-induced release of NO was not reduced, whereas the potentiation of contractile responses was indeed achieved. The possibility that NOS had not been completely inhibited under our experimental conditions can be precluded because NOS activity was significantly inhibited after both L-NAME treatments. After the in vitro treatment with 1 to 100 μM L-NAME, the inhibition of NOS was concentration-dependent (from 50% to 90%). With regard to the basal release of NO, the inhibition caused by L-NAME was not concentration-dependent and reached a maximum of 40%, suggesting that basal NO outflow is only partially dependent on NOS activity. An eventual enhancement of NOS activity caused by KCl was disregarded because the activity of this enzyme measured in homogenates from mesenteric beds perfused with 70 mM KCl was significantly reduced. On the other hand, endothelium removal, employed as a negative control, almost abolished NOS activity, whereas the incubation with the Ca2+ ionophore A23187, employed as a positive control, induced an increase in NOS activity. It is concluded that in the mesenteric arterial bed of the rat, the contractile responses elicited by depolarization through KCl are coincident with a NOS-independent release of NO. This observation, which differs from the results obtained with noradrenaline, do not support the use of KCl as an alternative contractile agent whenever the participation of NO is under study. (C) 2000 Elsevier Science B.V.Fil: Mendizabal, Victoria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; ArgentinaFil: Poblete, I.. Pontificia Universidad Católica de Chile; ChileFil: Lomniczi, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Besuhli, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Huidobro Toro, J. P.. Pontificia Universidad Católica de Chile; ChileFil: Adler, Edda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Farmacológicas. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones Farmacológicas; Argentin

    Crossing the light line

    Get PDF
    We ask the question “what happens to Bloch waves in gratings synthetically moving at near the speed of light?”. First we define a constant refractive index (CRI) model in which Bloch waves remain well defined as they break the light barrier, then show their dispersion rotating through 360° from negative to positive and back again. Next we introduce the effective medium approximation (EMA) then refine it into a 4-wave model which proves to be highly accurate. Finally using the Bloch waves to expand a pulse of light we demonstrate sudden inflation of pulse amplitude combined with reversal of propagation direction as a luminal grating is turned on
    corecore