314 research outputs found

    Tensor-Scalar Torsion

    Get PDF
    A theory of gravity with torsion is examined in which the torsion tensor is constructed from the exterior derivative of an antisymmetric rank two potential plus the dual of the gradient of a scalar field. Field equations for the theory are derived by demanding that the action be stationary under variations with respect to the metric, the antisymmetric potential, and the scalar field. A material action is introduced and the equations of motion are derived. The correct conservation law for rotational angular momentum plus spin is observed to hold in this theory.Comment: 10 pages, LaTeX, Mod. Phys. Lett. A accepte

    Quantization of Nonstandard Hamiltonian Systems

    Get PDF
    The quantization of classical theories that admit more than one Hamiltonian description is considered. This is done from a geometrical viewpoint, both at the quantization level (geometric quantization) and at the level of the dynamics of the quantum theory. A spin-1/2 system is taken as an example in which all the steps can be completed. It is shown that the geometry of the quantum theory imposes restrictions on the physically allowed nonstandard quantum theories.Comment: Revtex file, 23 pages, no figure

    Quantum Field Theory with Null-Fronted Metrics

    Full text link
    There is a large class of classical null-fronted metrics in which a free scalar field has an infinite number of conservation laws. In particular, if the scalar field is quantized, the number of particles is conserved. However, with more general null-fronted metrics, field quantization cannot be interpreted in terms of particle creation and annihilation operators, and the physical meaning of the theory becomes obscure.Comment: 11 page

    The Husain-Kuchar Model: Time Variables and Non-degenerate Metrics

    Get PDF
    We study the Husain-Kuchar model by introducing a new action principle similar to the self-dual action used in the Ashtekar variables approach to Quantum Gravity. This new action has several interesting features; among them, the presence of a scalar time variable that allows the definition of geometric observables without adding new degrees of freedom, the appearance of a natural non-degenerate four-metric and the possibility of coupling ordinary matter.Comment: LaTeX, 22 pages, accepted for publication in Phys. Rev.

    Lagrangian approach to a symplectic formalism for singular systems

    Get PDF
    We develop a Lagrangian approach for constructing a symplectic structure for singular systems. It gives a simple and unified framework for understanding the origin of the pathologies that appear in the Dirac-Bergmann formalism, and offers a more general approach for a symplectic formalism, even when there is no Hamiltonian in a canonical sense. We can thus overcome the usual limitations of the canonical quantization, and perform an algebraically consistent quantization for a more general set of Lagrangian systems.Comment: 30 page

    The Canonical Approach to Quantum Gravity: General Ideas and Geometrodynamics

    Get PDF
    We give an introduction to the canonical formalism of Einstein's theory of general relativity. This then serves as the starting point for one approach to quantum gravity called quantum geometrodynamics. The main features and applications of this approach are briefly summarized.Comment: 21 pages, 6 figures. Contribution to E. Seiler and I.-O. Stamatescu (editors): `Approaches To Fundamental Physics -- An Assessment Of Current Theoretical Ideas' (Springer Verlag, to appear

    Quantization with maximally degenerate Poisson brackets: The harmonic oscillator!

    Full text link
    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems

    Action functionals of single scalar fields and arbitrary--weight gravitational constraints that generate a genuine Lie algebra

    Get PDF
    We discuss the issue initiated by Kucha\v{r} {\it et al}, of replacing the usual Hamiltonian constraint by alternative combinations of the gravitational constraints (scalar densities of arbitrary weight), whose Poisson brackets strongly vanish and cast the standard constraint-system for vacuum gravity into a form that generates a true Lie algebra. It is shown that any such combination---that satisfies certain reality conditions---may be derived from an action principle involving a single scalar field and a single Lagrange multiplier with a non--derivative coupling to gravity.Comment: 26 pages, plain TE

    Duality properties of Gorringe-Leach equations

    Full text link
    In the category of motions preserving the angular momentum's direction, Gorringe and Leach exhibited two classes of differential equations having elliptical orbits. After enlarging slightly these classes, we show that they are related by a duality correspondence of the Arnold-Vassiliev type. The specific associated conserved quantities (Laplace-Runge-Lenz vector and Fradkin-Jauch-Hill tensor) are then dual reflections one of the othe
    • …
    corecore