465 research outputs found

    Stationary perturbations and infinitesimal rotations of static Einstein-Yang-Mills configurations with bosonic matter

    Get PDF
    Using the Kaluza-Klein structure of stationary spacetimes, a framework for analyzing stationary perturbations of static Einstein-Yang-Mills configurations with bosonic matter fields is presented. It is shown that the perturbations giving rise to non-vanishing ADM angular momentum are governed by a self-adjoint system of equations for a set of gauge invariant scalar amplitudes. The method is illustrated for SU(2) gauge fields, coupled to a Higgs doublet or a Higgs triplet. It is argued that slowly rotating black holes arise generically in self-gravitating non-Abelian gauge theories with bosonic matter, whereas, in general, soliton solutions do not have rotating counterparts.Comment: 8 pages, revtex, no figure

    Pulsation of Spherically Symmetric Systems in General Relativity

    Full text link
    The pulsation equations for spherically symmetric black hole and soliton solutions are brought into a standard form. The formulae apply to a large class of field theoretical matter models and can easily be worked out for specific examples. The close relation to the energy principle in terms of the second variation of the Schwarzschild mass is also established. The use of the general expressions is illustrated for the Einstein-Yang-Mills and the Einstein-Skyrme system.Comment: 21 pages, latex, no figure

    A no-go on strictly stationary spacetimes in four/higher dimensions

    Full text link
    We show that strictly stationary spacetimes cannot have non-trivial configurations of form fields/complex scalar fields and then the spacetime should be exactly Minkowski or anti-deSitter spacetimes depending on the presence of negative cosmological constant. That is, self-gravitating complex scalar fields and form fields cannot exist.Comment: 8 page

    A Mass Bound for Spherically Symmetric Black Hole Spacetimes

    Get PDF
    Requiring that the matter fields are subject to the dominant energy condition, we establish the lower bound (4π)−1κA(4\pi)^{-1} \kappa {\cal A} for the total mass MM of a static, spherically symmetric black hole spacetime. (A{\cal A} and κ\kappa denote the area and the surface gravity of the horizon, respectively.) Together with the fact that the Komar integral provides a simple relation between M−(4π)−1κAM - (4\pi)^{-1} \kappa A and the strong energy condition, this enables us to prove that the Schwarzschild metric represents the only static, spherically symmetric black hole solution of a selfgravitating matter model satisfying the dominant, but violating the strong energy condition for the timelike Killing field KK at every point, that is, R(K,K)≤0R(K,K) \leq 0. Applying this result to scalar fields, we recover the fact that the only black hole configuration of the spherically symmetric Einstein-Higgs model with arbitrary non-negative potential is the Schwarzschild spacetime with constant Higgs field. In the presence of electromagnetic fields, we also derive a stronger bound for the total mass, involving the electromagnetic potentials and charges. Again, this estimate provides a simple tool to prove a ``no-hair'' theorem for matter fields violating the strong energy condition.Comment: 16 pages, LATEX, no figure

    On Black Hole Scalar Hair in Asymptotically Anti de Sitter Spacetimes

    Full text link
    The unexpected discovery of hairy black hole solutions in theories with scalar fields simply by considering asymptotically Anti de-Sitter, rather than asymptotically flat, boundary conditions is analyzed in a way that exhibits in a clear manner the differences between the two situations. It is shown that the trivial Schwarzschild Anti de Sitter becomes unstable in some of these situations, and the possible relevance of this fact for the ADS/CFT conjecture is pointed out.Comment: 12 pages. Published versio

    Mass of Colored Black Holes

    Get PDF
    New results pertaining to colored static black hole solutions to the Einstein-Yang-Mills equations are obtained. The isolated horizons framework is used to define the concept of Hamiltonian Horizon Mass of the black hole. An unexpected relation between the ADM and Horizon masses of the black hole solution with the ADM mass of the corresponding Bartnik-McKinnon soliton is found. These results can be generalized to other non-linear theories and they suggest a general testing bed for the instability of the corresponding hairy black holes.Comment: 8 pages, no figures, Revtex file. Minor changes made to clarify some formulas. References updated. Final version to appear in PRD/15

    Rotating solitons and non-rotating, non-static black holes

    Get PDF
    It is shown that the non-Abelian black hole solutions have stationary generalizations which are parameterized by their angular momentum and electric Yang-Mills charge. In particular, there exists a non-static class of stationary black holes with vanishing angular momentum. It is also argued that the particle-like Bartnik-McKinnon solutions admit slowly rotating, globally regular excitations. In agreement with the non-Abelian version of the staticity theorem, these non-static soliton excitations carry electric charge, although their non-rotating limit is neutral.Comment: 5 pages, REVTe

    Magnetic charge, angular momentum and negative cosmological constant

    Get PDF
    We argue that there are no axially symmetric rotating monopole solutions for a Yang-Mills-Higgs theory in flat spacetime background. We construct axially symmetric Yang-Mills-Higgs solutions in the presence of a negative cosmological constant, carrying magnetic charge nn and a nonvanishing electric charge. However, these solution are also nonrotating.Comment: 17 pages, LaTeX, 7 figure

    Substituting the main group element in cobalt - iron based Heusler alloys: Co2_2FeAl1−x_{1-x}Six_x

    Full text link
    This work reports about electronic structure calculations for the Heusler compound Co2_2FeAl1−x_{1-x}Six_x. Particular emphasis was put on the role of the main group element in this compound. The substitution of Al by Si leads to an increase of the number of valence electrons with increasing Si content and may be seen as electron-doping. Self-consistent electronic structure calculations were performed to investigate the consequences of the electron doping for the magnetic properties. The series Co2_2FeAl1−x_{1-x}Six_x is found to exhibit half-metallic ferromagnetism and the magnetic moment follows the Slater-Pauling rule. It is shown that the electron-doping stabilises the gap in the minority states for x=0.5x=0.5.Comment: J. Phys. D (accepted
    • …
    corecore