71,182 research outputs found
A normalisation procedure for biaxial bias extension tests
Biaxial Bias Extension tests have been performed on a plain-weave carbon fibre engineering fabric. The test results have been normalised using both the upper and lower bound method proposed by Potluri et al. and also using a novel alternative normalisation method based on energy arguments. The normalised results from both methods are compared and discussed
Population-inversion and gain estimates for a semiconductor TASER
We have investigated a solid-state design advanced (see Soref et al, in SPIE Proceedings, vol. 3795, p, 516, 1999) to achieve a terahertz-amplification-by-the-stimulated-emision-of-radiation (TASER), The original design was based on light-to heavy-hole intersubband transitions in SiGe/Si heterostructures, This work adapts the design to electron intersubband transitions in the more readily available GaAs/Ga1-xAlxAs material system. It is found that the electric-field induced anti-crossings of the states, derived from the first excited state with the ground states of a superlattice in the Stark-ladder regime, offers the possibility of a population inversion and gain at room temperature
Carrier scattering approach to the origins of dark current in mid- and far-infrared (terahertz) quantum-well intersubband photodetectors (QWIPs)
A carrier scattering approach is taken in an analysis
of the affect on the dark current of extending the operating wavelength of conventional bound to continuum quantum-well intersubband photodetectors. It is found that both the sequential tunneling and the thermionic emission contributions to the dark current increase as the wavelength of the detector is extended from the
mid- to far-infrared. Dark current designs rules are derived
A 3D beam-column element implemented within a hybrid force-based method
This paper describes a force-based beam-column element implemented using a hybrid force-based solution strategy.
The element can accommodate elastic-plastic strain hardening material behaviour under various loadings including
axial, torsion, bending and shear deformation, both in and out of the plane of the element. In order to overcome
difficulties associated with conventional displacement-based and force-based methods a hybrid force based-method is
proposed. This alternative approach is based on simultaneous use of the principles of minimum total potential energy
and minimum complementary potential energy. Here the primary equation is the equilibrium equation rather than the
compatibility equation (the latter takes precedence when following a displacement based solution strategy). The
predictions of the element using this solution procedure are compared against predictions from AbaqusTM
, showing
excellent agreemen
An expert system shell for inferring vegetation characteristics: The learning system (tasks C and D)
This report describes the implementation of a learning system that uses a data base of historical cover type reflectance data taken at different solar zenith angles and wavelengths to learn class descriptions of classes of cover types. It has been integrated with the VEG system and requires that the VEG system be loaded to operate. VEG is the NASA VEGetation workbench - an expert system for inferring vegetation characteristics from reflectance data. The learning system provides three basic options. Using option one, the system learns class descriptions of one or more classes. Using option two, the system learns class descriptions of one or more classes and then uses the learned classes to classify an unknown sample. Using option three, the user can test the system's classification performance. The learning system can also be run in an automatic mode. In this mode, options two and three are executed on each sample from an input file. The system was developed using KEE. It is menu driven and contains a sophisticated window and mouse driven interface which guides the user through various computations. Input and output file management and data formatting facilities are also provided
The effects of linear and non-linear diffusion on exciton energies in quantum wells
This paper considers the technique of investigating diffusion processes via monitoring spectroscopically the ground state energy of an exciton confined in a quantum well. It is shown that the change in the exciton energy E–E0 during linear diffusion, can be described by an empirical relationship E–E0=(E–E0)(1–exp{–Dt/lw}), where E is the band gap of the initial barrier material, D the diffusion constant and t the time. Detailed calculations accounting for the changes in the exciton binding energy have shown that the parameter ~1.5 for all wells of width lw40 Å regardless of the material system. It is proposed that this relationship could be used to determine the linear diffusion coefficient D. Once D has been determined the relationship could then be utilized as a predictive tool, e.g., to determine the annealing time necessary to produce a given energy shift for a particular quantum well width. The paper goes on to discuss the effects non-linear diffusion processes could have on exciton energies in quantum wells. In particular, it is shown how detailed spectroscopy and annealing experiments when coupled with accurate modelling could be used to distinguish between constant and concentration dependent diffusion coefficients. © 1996 American Institute of Physics
Nitrogen cycling in a Quercus/Fraxinus (oak/ash) woodland in northern England, examined using the computer model FORTNITE
Modelling the shear-tension coupling of woven engineering fabrics
An approach to incorporate the coupling between the shear compliance and in-plane tension of woven engineering fabrics, in finite-element-based numerical simulations, is described. The method involves the use of multiple input curves that are selectively fed into a hypoelastic constitutive model that has been developed previously for engineering fabrics. The selection process is controlled by the current value of the in-plane strain along the two fibre directions using a simple algorithm. Model parameters are determined from actual experimental data, measured using the Biaxial Bias Extension test. An iterative process involving finite element simulations of the experimental test is used to normalise the test data for use in the code. Finally, the effectiveness of the method is evaluated and shown to provide qualitatively good predictions
- …
