368 research outputs found

    Structure and energetics of solvated ferrous and ferric ions: Car-Parrinello molecular dynamics in the DFT+U formalism

    Full text link
    We implemented a rotationally-invariant Hubbard U extension to density-functional theory in the Car-Parrinello molecular dynamics framework, with the goal of bringing the accuracy of the DFT+U approach to finite-temperature simulations, especially for liquids or solids containing transition-metal ions. First, we studied the effects on the Hubbard U on the static equilibrium structure of the hexa-aqua ferrous and ferric ions, and the inner-sphere reorganization energy for the electron-transfer reaction between aqueous ferrous and ferric ions. It is found that the reorganization energy is increased, mostly as a result of the Fe-O distance elongation in the hexa-aqua ferrous ion. Second, we performed a first-principles molecular dynamics study of the solvation structure of the two aqueous ferrous and ferric ions. The Hubbard term is found to change the Fe-O radial distribution function for the ferrous ion, while having a negligible effect on the aqueous ferric ion. Moreover, the frequencies of vibrations between Fe and oxygen atoms in the first-solvation shell are shown to be unaffected by the Hubbard corrections for both ferrous and ferric ions.Comment: 13 pages, 2 figures, 1 table. Submitted to Journal of Electroanalytical Chemistr

    Children's Use of Electronic Games: Choices of Game Mode and Challenge Levels

    Get PDF
    Introduction. Interactive electronic games are popular and are believed to contribute to physical activity accrual. The purpose of this study was to examine children's electronic game use during conditions in which they had free access to selecting interactive and seated screen-based versions of electronic games and during the interactive versions had free choice in making adjustments to the activity intensity. Methods. We systematically observed 60 Hong Kong primary school children during two 60-minute game sessions while simultaneously recording their game mode choices and physical activity levels using SOFIT (System for Observing Fitness Instruction Time). Results. When given free choice, children spent more than half of their available time participating in interactive versions of games. These versions of games provided significantly more moderate-to-vigorous physical activity and greater energy expenditure than the computer screen versions. Children with the opportunity to modify intensity levels spent more time playing the interactive versions and accrued more physical activity. Conclusions. The tenets of behavioral choice theory were supported. Access to new-generation interactive games, particularly those with modifiable intensity levels, may facilitate children's participation in physical activity

    Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-ray Scattering

    Full text link
    Metallic liquid silicon at 1787K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally-localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state.Comment: 5pages, 3 postscript figure

    A Common Variant in MIR182 Is Associated With Primary Open-Angle Glaucoma in the NEIGHBORHOOD Consortium

    Get PDF
    PURPOSE. Noncoding microRNAs (miRNAs) have been implicated in the pathogenesis of glaucoma. We aimed to identify common variants in miRNA coding genes (MIR) associated with primary open-angle glaucoma (POAG). METHODS. Using the NEIGHBORHOOD data set (3853 cases/33,480 controls with European ancestry), we first assessed the relation between 85 variants in 76 MIR genes and overall POAG. Subtype-specific analyses were performed in high-tension glaucoma (HTG) and normal-tension glaucoma subsets. Second, we examined the expression of miR-182, which was associated with POAG, in postmortem human ocular tissues (ciliary body, cornea, retina, and trabecular meshwork [TM]), using miRNA sequencing (miRNA-Seq) and droplet digital PCR (ddPCR). Third, miR-182 expression was also examined in human aqueous humor (AH) by using miRNA-Seq. Fourth, exosomes secreted from primary human TM cells were examined for miR-182 expression by using miRNA-Seq. Fifth, using ddPCR we compared miR182 expression in AH between five HTG cases and five controls. RESULTS. Only rs76481776 in MIR182 gene was associated with POAG after adjustment for multiple comparisons (odds ratio [OR] ÂŒ 1.23, 95% confidence interval [CI]: 1.11–1.42, P ÂŒ 0.0002). Subtype analysis indicated that the association was primarily in the HTG subset (OR ÂŒ 1.26, 95% CI: 1.08–1.47, P ÂŒ 0.004). The risk allele T has been associated with elevated miR-182 expression in vitro. Data from ddPCR and miRNA-Seq confirmed miR-182 expression in all examined ocular tissues and TM-derived exosomes. Interestingly, miR-182 expression in AH was 2-fold higher in HTG patients than nonglaucoma controls (P ÂŒ 0.03) without controlling for medication treatment. CONCLUSIONS. Our integrative study is the first to associate rs76481776 with POAG via elevated miR-182 expression

    A Common Variant in MIR182 Is Associated With Primary Open-Angle Glaucoma in the NEIGHBORHOOD Consortium

    Get PDF
    PURPOSE. Noncoding microRNAs (miRNAs) have been implicated in the pathogenesis of glaucoma. We aimed to identify common variants in miRNA coding genes (MIR) associated with primary open-angle glaucoma (POAG). METHODS. Using the NEIGHBORHOOD data set (3853 cases/33,480 controls with European ancestry), we first assessed the relation between 85 variants in 76 MIR genes and overall POAG. Subtype-specific analyses were performed in high-tension glaucoma (HTG) and normal-tension glaucoma subsets. Second, we examined the expression of miR-182, which was associated with POAG, in postmortem human ocular tissues (ciliary body, cornea, retina, and trabecular meshwork [TM]), using miRNA sequencing (miRNA-Seq) and droplet digital PCR (ddPCR). Third, miR-182 expression was also examined in human aqueous humor (AH) by using miRNA-Seq. Fourth, exosomes secreted from primary human TM cells were examined for miR-182 expression by using miRNA-Seq. Fifth, using ddPCR we compared miR182 expression in AH between five HTG cases and five controls. RESULTS. Only rs76481776 in MIR182 gene was associated with POAG after adjustment for multiple comparisons (odds ratio [OR] ÂŒ 1.23, 95% confidence interval [CI]: 1.11–1.42, P ÂŒ 0.0002). Subtype analysis indicated that the association was primarily in the HTG subset (OR ÂŒ 1.26, 95% CI: 1.08–1.47, P ÂŒ 0.004). The risk allele T has been associated with elevated miR-182 expression in vitro. Data from ddPCR and miRNA-Seq confirmed miR-182 expression in all examined ocular tissues and TM-derived exosomes. Interestingly, miR-182 expression in AH was 2-fold higher in HTG patients than nonglaucoma controls (P ÂŒ 0.03) without controlling for medication treatment. CONCLUSIONS. Our integrative study is the first to associate rs76481776 with POAG via elevated miR-182 expression

    The impact of foreign direct investment on the productivity of China’s automotive industry

    Get PDF
    ‱ This study contributes to the existing literature by empirically investigating the effect of FDI inflows on the aggregate labour productivity of China's automotive industry. ‱ A production function model is developed using a panel data set at sub-sector level. Two statistical models: pooled ordinary least squares model (POLS) and fixed effects model (FES) were used to estimate the influence of foreign direct investment on aggregate labour productivity in the industry

    Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells

    Get PDF
    The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis
    • 

    corecore