25,751 research outputs found

    Dynamics of composite Haldane spin chains in IPA-CuCl3

    Full text link
    Magnetic excitations in the quasi-one-dimensional antiferromagnet IPA-CuCl3 are studied by cold neutron inelastic scattering. Strongly dispersive gap excitations are observed. Contrary to previously proposed models, the system is best described as an asymmetric quantum spin ladder. The observed spectrum is interpreted in terms of ``composite'' Haldane spin chains. The key difference from actual S=1 chains is a sharp cutoff of the single-magnon spectrum at a certain critical wave vector.Comment: 4 pages 4 figure

    Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach

    Get PDF
    It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris

    Accurate description of the optical response of a multilayered spherical system in the long wavelength approximation

    Get PDF
    The optical response of a multilayered spherical system of unlimited number of layers (a “matryoshka”) in the long wavelength limit can be accounted for from the knowledge of the static multipole polarizability of the system to first-order accuracy. However, for systems of ultrasmall dimensions or systems with sizes not-too-small compared to the wavelength, this ordinary quasistatic long wavelength approximation (LWA) becomes inaccurate. Here we introduce two significant modifications of the LWA for such a nanomatryoshka in each of the two limits: the nonlocal optical response for ultrasmall systems (\u3c10 \u3enm), and the “finite-wavelength corrections” for systems ∌100 nm. This is accomplished by employing the previous work for a single-layer shell, in combination with a certain effective-medium approach formulated recently in the literature. Numerical calculations for the extinction cross sections for such a system of different dimensions are provided as illustrations for these effects. This formulation thus provides significant improvements on the ordinary LWA, yielding enough accuracy for the description of the optical response of these nanoshell systems over an appreciable range of sizes, without resorting to more involved quantum mechanical or fully electrodynamic calculations

    Comparison of chemical profiles and effectiveness between Erxian decoction and mixtures of decoctions of its individual herbs : a novel approach for identification of the standard chemicals

    Get PDF
    Acknowledgements This study was partially supported by grants from the Seed Funding Programme for Basic Research (Project Number 201211159146 and 201411159213), the University of Hong Kong. We thank Mr Keith Wong and Ms Cindy Lee for their technical assistances.Peer reviewedPublisher PD

    Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu_3(OH)_6Cl_2

    Full text link
    We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagome lattice antiferromagnet Zn Cu_3 (OH)_6 Cl_2. The susceptibility indicates a Curie-Weiss temperature of ~ -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law with exponent less than or equal to 1. These results suggest that an unusual spin-liquid state with essentially gapless excitations is realized in this kagome lattice system.Comment: 4 pages, 3 figures; v2: Updates to authors list and references; v3: Updated version; v4: Published versio

    Theory of superconductor-insulator transition in single Josephson junctions

    Full text link
    A non-band theory is developed to describe the superconductor-insulator (SI) transtition in resistively shunted, single Josephson junctions. The I−VI-V characteristic is formulated by a Landauer-like formula and evaluated by the path-integral transfer-matrix method. The result is consistent with the recent experiments at around 80 mKmK. However, the insulator phase shrinks with decreasing temperature indicating that the single Josephson junction becomes all superconducting at absolute zero temperature, as long as dissipation is present.Comment: 4 pages, 3 figure
    • 

    corecore