4,199 research outputs found

    Quantum Logic for Trapped Atoms via Molecular Hyperfine Interactions

    Full text link
    We study the deterministic entanglement of a pair of neutral atoms trapped in an optical lattice by coupling to excited-state molecular hyperfine potentials. Information can be encoded in the ground-state hyperfine levels and processed by bringing atoms together pair-wise to perform quantum logical operations through induced electric dipole-dipole interactions. The possibility of executing both diagonal and exchange type entangling gates is demonstrated for two three-level atoms and a figure of merit is derived for the fidelity of entanglement. The fidelity for executing a CPHASE gate is calculated for two 87Rb atoms, including hyperfine structure and finite atomic localization. The main source of decoherence is spontaneous emission, which can be minimized for interaction times fast compared to the scattering rate and for sufficiently separated atomic wavepackets. Additionally, coherent couplings to states outside the logical basis can be constrained by the state dependent trapping potential.Comment: Submitted to Physical Review

    New paradoxical games based on Brownian ratchets

    Get PDF
    Based on Brownian ratchets, a counter-intuitive phenomenon has recently emerged -- namely, that two losing games can yield, when combined, a paradoxical tendency to win. A restriction of this phenomenon is that the rules depend on the current capital of the player. Here we present new games where all the rules depend only on the history of the game and not on the capital. This new history-dependent structure significantly increases the parameter space for which the effect operates.Comment: 4 pages, 3 eps figures, revte

    Propagation of Bose-Einstein condensates in a magnetic waveguide

    Full text link
    Gaseous Bose-Einstein condensates of 2-3 million atoms were loaded into a microfabricated magnetic trap using optical tweezers. Subsequently, the condensates were released into a magnetic waveguide and propagated 12 mm. Single-mode propagation was observed along homogeneous segments of the waveguide. Inhomogeneities in the guiding potential arose from geometric deformations of the microfabricated wires and caused strong transverse excitations. Such deformations may restrict the waveguide physics that can be explored with propagating condensates.Comment: 5 pages, 4 figure

    A Storage Ring for Neutral Atoms

    Get PDF
    We have demonstrated a storage ring for ultra-cold neutral atoms. Atoms with mean velocities of 1 m/s corresponding to kinetic energies of ~100 neV are confined to a 2 cm diameter ring by magnetic forces produced by two current-carrying wires. Up to 10^6 atoms are loaded at a time in the ring, and 7 revolutions are clearly observed. Additionally, we have demonstrated multiple loading of the ring and deterministic manipulation of the longitudinal velocity distribution of the atoms using applied laser pulses. Applications of this ring include large area atom interferometers and cw monochromatic atomic beam generation.Comment: 4 pages, 5 figure

    Bosons in cigar-shape traps: Thomas-Fermi regime, Tonks-Girardeau regime, and between

    Full text link
    We present a quantitative analysis of the experimental accessibility of the Tonks-Girardeau gas in the current day experiments with cigar-trapped alkalis. For this purpose we derive, using a Bethe anzats generated local equation of state, a set of hydrostatic equations describing one-dimensional delta-interacting Bose gases trapped in a harmonic potential. The resulting solutions cover the_entire range_ of atomic densities.Comment: 4 pages, 4 figure

    Regimes of quantum degeneracy in trapped 1D gases

    Full text link
    We discuss the regimes of quantum degeneracy in a trapped 1D gas and obtain the diagram of states. Three regimes have been identified: the BEC regimes of a true condensate and quasicondensate, and the regime of a trapped gas of Tonks (gas of impenetrable bosons). The presence of a sharp cross-over to the BEC regime requires extremely small interaction between particles. We discuss how to distinguish between true and quasicondensates in phase coherence experiments.Comment: 4 pages, 1 eps figur
    • …
    corecore