1,691 research outputs found

    Large Effects of Electric Fields on Atom-Molecule Collisions at Millikelvin Temperatures

    Get PDF
    Controlling interactions between cold molecules using external fields can elucidate the role of quantum mechanics in molecular collisions. We create a new experimental platform in which ultracold rubidium atoms and cold ammonia molecules are separately trapped by magnetic and electric fields and then combined to study collisions. We observe inelastic processes that are faster than expected from earlier field-free calculations. We use quantum scattering calculations to show that electric fields can have a major effect on collision outcomes, even in the absence of dipole-dipole interactions.Comment: 5 pages, 4 figure

    Growing and Marketing Watermelons.

    Get PDF
    12pg

    Optimization of a 96-Well Electroporation Assay for Postnatal Rat CNS Neurons Suitable for Cost–Effective Medium-Throughput Screening of Genes that Promote Neurite Outgrowth

    Get PDF
    Following an injury, central nervous system (CNS) neurons show a very limited regenerative response which results in their failure to successfully form functional connections with their original target. This is due in part to the reduced intrinsic growth state of CNS neurons, which is characterized by their failure to express key regeneration-associated genes (RAGs) and by the presence of growth inhibitory molecules in CNS environment that form a molecular and physical barrier to regeneration. Here we have optimized a 96-well electroporation and neurite outgrowth assay for postnatal rat cerebellar granule neurons (CGNs) cultured upon an inhibitory cellular substrate expressing myelin-associated glycoprotein or a mixture of growth inhibitory chondroitin sulfate proteoglycans. Optimal electroporation parameters resulted in 28% transfection efficiency and 51% viability for postnatal rat CGNs. The neurite outgrowth of transduced neurons was quantitatively measured using a semi-automated image capture and analysis system. The neurite outgrowth was significantly reduced by the inhibitory substrates which we demonstrated could be partially reversed using a Rho Kinase inhibitor. We are now using this assay to screen large sets of RAGs for their ability to increase neurite outgrowth on a variety of growth inhibitory and permissive substrates

    Understanding the Challenges of Reducing Cancer in Appalachia: Addressing a Place-Based Health Disparity Population

    Get PDF
    The Appalachian region of the United States has long been recognized for its poor economic and social indicators. Only during the past decade have multi-state data become more accessible to describe the regions’ poor health status and resulting outcomes. A recent community-based participatory study engaged rural Appalachians to describe “what makes Appalachia different?” from other geographic areas and cultural groups in the United States and identify those characteristics that influence the region’s health. This article summarizes the community interpretation of these findings

    Interaction between LiH molecule and Li atom from state-of-the-art electronic structure calculations

    Get PDF
    State-of-the-art ab initio techniques have been applied to compute the potential energy surface for the lithium atom interacting with the lithium hydride molecule in the Born–Oppenheimer approximation. The interaction potential was obtained using a combination of the explicitly correlated unrestricted coupled-cluster method with single, double, and noniterative triple excitations [UCCSD(T)-F12] for the core–core and core–valence correlation and full configuration interaction for the valence–valence correlation. The potential energy surface has a global minimum 8743 cm−1 deep if the Li–H bond length is held fixed at the monomer equilibrium distance or 8825 cm−1 deep if it is allowed to vary. In order to evaluate the performance of the conventional CCSD(T) approach, calculations were carried out using correlation-consistent polarized valence X-tuple-zeta basis sets, with X ranging from 2 to 5, and a very large set of bond functions. Using simple two-point extrapolations based on the single-power laws X−2 and X−3 for the orbital basis sets, we were able to reproduce the CCSD(T)–F12 results for the characteristic points of the potential with an error of 0.49% at worst. The contribution beyond the CCSD(T)–F12 model, obtained from full configuration interaction calculations for the valence–valence correlation, was shown to be very small, and the error bars on the potential were estimated. At linear LiH–Li geometries, the ground-state potential shows an avoided crossing with an ion-pair potential. The energy difference between the ground-state and excited-state potentials at the avoided crossing is only 94 cm−1. Using both adiabatic and diabatic pictures, we analyze the interaction between the two potential energy surfaces and its possible impact on the collisional dynamics. When the Li–H bond is allowed to vary, a seam of conical intersections appears at C2v geometries. At the linear LiH–Li geometry, the conical intersection is at a Li–H distance which is only slightly larger than the monomer equilibrium distance, but for nonlinear geometries it quickly shifts to Li–H distances that are well outside the classical turning points of the ground-state potential of LiH. This suggests that the conical intersection will have little impact on the dynamics of Li–LiH collisions at ultralow temperatures. Finally, the reaction channels for the exchange and insertion reactions are also analyzed and found to be unimportant for the dynamics

    Cold collisions of OH and Rb. I: the free collision

    Get PDF
    We have calculated elastic and state-resolved inelastic cross sections for cold and ultracold collisions in the Rb(1S^1 S) + OH(2Π3/2^2 \Pi_{3/2}) system, including fine-structure and hyperfine effects. We have developed a new set of five potential energy surfaces for Rb-OH(2Π^2 \Pi) from high-level {\em ab initio} electronic structure calculations, which exhibit conical intersections between covalent and ion-pair states. The surfaces are transformed to a quasidiabatic representation. The collision problem is expanded in a set of channels suitable for handling the system in the presence of electric and/or magnetic fields, although we consider the zero-field limit in this work. Because of the large number of scattering channels involved, we propose and make use of suitable approximations. To account for the hyperfine structure of both collision partners in the short-range region we develop a frame-transformation procedure which includes most of the hyperfine Hamiltonian. Scattering cross sections on the order of 101310^{-13} cm2^2 are predicted for temperatures typical of Stark decelerators. We also conclude that spin orientation of the partners is completely disrupted during the collision. Implications for both sympathetic cooling of OH molecules in an environment of ultracold Rb atoms and experimental observability of the collisions are discussed.Comment: 20 pages, 16 figure

    Finite to infinite steady state solutions, bifurcations of an integro-differential equation

    Get PDF
    We consider a bistable integral equation which governs the stationary solutions of a convolution model of solid--solid phase transitions on a circle. We study the bifurcations of the set of the stationary solutions as the diffusion coefficient is varied to examine the transition from an infinite number of steady states to three for the continuum limit of the semi--discretised system. We show how the symmetry of the problem is responsible for the generation and stabilisation of equilibria and comment on the puzzling connection between continuity and stability that exists in this problem

    Existence of radial stationary solutions for a system in combustion theory

    Full text link
    In this paper, we construct radially symmetric solutions of a nonlinear noncooperative elliptic system derived from a model for flame balls with radiation losses. This model is based on a one step kinetic reaction and our system is obtained by approximating the standard Arrehnius law by an ignition nonlinearity, and by simplifying the term that models radiation. We prove the existence of 2 solutions using degree theory

    Phonon-Coupled Electron Tunneling in Two and Three-Dimensional Tunneling Configurations

    Full text link
    We treat a tunneling electron coupled to acoustical phonons through a realistic electron phonon interaction: deformation potential and piezoelectric, in two or three-dimensional tunneling configurations. Making use of slowness of the phonon system compared to electron tunneling, and using a Green function method for imaginary time, we are able to calculate the change in the transition probability due to the coupling to phonons. It is shown using standard renormalization procedure that, contrary to the one-dimensional case, second order perturbation theory is sufficient in order to treat the deformation potential coupling, which leads to a small correction to the transmission coefficient prefactor. In the case of piezoelectric coupling, which is found to be closely related to the piezoelectric polaron problem, vertex corrections need to be considered. Summing leading logarithmic terms, we show that the piezoelectric coupling leads to a significant change of the transmission coefficient.Comment: 17 pages, 4 figure
    corecore