425 research outputs found
Double Exponential Instability of Triangular Arbitrage Systems
If financial markets displayed the informational efficiency postulated in the
efficient markets hypothesis (EMH), arbitrage operations would be
self-extinguishing. The present paper considers arbitrage sequences in foreign
exchange (FX) markets, in which trading platforms and information are
fragmented. In Kozyakin et al. (2010) and Cross et al. (2012) it was shown that
sequences of triangular arbitrage operations in FX markets containing 4
currencies and trader-arbitrageurs tend to display periodicity or grow
exponentially rather than being self-extinguishing. This paper extends the
analysis to 5 or higher-order currency worlds. The key findings are that in a
5-currency world arbitrage sequences may also follow an exponential law as well
as display periodicity, but that in higher-order currency worlds a double
exponential law may additionally apply. There is an "inheritance of
instability" in the higher-order currency worlds. Profitable arbitrage
operations are thus endemic rather that displaying the self-extinguishing
properties implied by the EMH.Comment: 22 pages, 22 bibliography references, expanded Introduction and
Conclusion, added bibliohraphy reference
Continuation-Passing C: compiling threads to events through continuations
In this paper, we introduce Continuation Passing C (CPC), a programming
language for concurrent systems in which native and cooperative threads are
unified and presented to the programmer as a single abstraction. The CPC
compiler uses a compilation technique, based on the CPS transform, that yields
efficient code and an extremely lightweight representation for contexts. We
provide a proof of the correctness of our compilation scheme. We show in
particular that lambda-lifting, a common compilation technique for functional
languages, is also correct in an imperative language like C, under some
conditions enforced by the CPC compiler. The current CPC compiler is mature
enough to write substantial programs such as Hekate, a highly concurrent
BitTorrent seeder. Our benchmark results show that CPC is as efficient, while
using significantly less space, as the most efficient thread libraries
available.Comment: Higher-Order and Symbolic Computation (2012). arXiv admin note:
substantial text overlap with arXiv:1202.324
Impact of target site distribution for Type I restriction enzymes on the evolution of methicillin-resistant Staphylococcus aureus (MRSA) populations.
A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA
Differences in genotype and virulence among four multidrug-resistant <i>Streptococcus pneumoniae</i> isolates belonging to the PMEN1 clone
We report on the comparative genomics and characterization of the virulence phenotypes of four <i>S. pneumoniae</i> strains that belong to the multidrug resistant clone PMEN1 (Spain<sup>23F</sup> ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinant
Affine term structure models : a time-changed approach with perfect fit to market curves
We address the so-called calibration problem which consists of fitting in a
tractable way a given model to a specified term structure like, e.g., yield or
default probability curves. Time-homogeneous jump-diffusions like Vasicek or
Cox-Ingersoll-Ross (possibly coupled with compounded Poisson jumps, JCIR), are
tractable processes but have limited flexibility; they fail to replicate actual
market curves. The deterministic shift extension of the latter (Hull-White or
JCIR++) is a simple but yet efficient solution that is widely used by both
academics and practitioners. However, the shift approach is often not
appropriate when positivity is required, which is a common constraint when
dealing with credit spreads or default intensities. In this paper, we tackle
this problem by adopting a time change approach. On the top of providing an
elegant solution to the calibration problem under positivity constraint, our
model features additional interesting properties in terms of implied
volatilities. It is compared to the shift extension on various credit risk
applications such as credit default swap, credit default swaption and credit
valuation adjustment under wrong-way risk. The time change approach is able to
generate much larger volatility and covariance effects under the positivity
constraint. Our model offers an appealing alternative to the shift in such
cases.Comment: 44 pages, figures and table
The Complete Genome Sequence of Mycoplasma bovis Strain Hubei-1
Infection by Mycoplasma bovis (M. bovis) can induce diseases, such as pneumonia and otitis media in young calves and mastitis and arthritis in older animals. Here, we report the finished and annotated genome sequence of M. bovis strain Hubei-1, a strain isolated in 2008 that caused calf pneumonia on a Chinese farm. The genome of M. bovis strain Hubei-1 contains a single circular chromosome of 953,114 bp with a 29.37% GC content. We identified 803 open reading frames (ORFs) that occupy 89.5% of the genome. While 34 ORFs were Hubei-1 specific, 662 ORFs had orthologs in the M. bovis type strain PG45 genome. Genome analysis validated lateral gene transfer between M. bovis and the Mycoplasma mycoides subspecies mycoides, while phylogenetic analysis found that the closest M. bovis neighbor is Mycoplasma agalactiae. Glycerol may be the main carbon and energy source of M. bovis, and most of the biosynthesis pathways were incomplete. We report that 47 lipoproteins, 12 extracellular proteins and 18 transmembrane proteins are phase-variable and may help M. bovis escape the immune response. Besides lipoproteins and phase-variable proteins, genomic analysis found two possible pathogenicity islands, which consist of four genes and 11 genes each, and several other virulence factors including hemolysin, lipoate protein ligase, dihydrolipoamide dehydrogenase, extracellular cysteine protease and 5′-nucleotidase
- …