739 research outputs found

    Visualization of Genomic Changes by Segmented Smoothing Using an L0 Penalty

    Get PDF
    Copy number variations (CNV) and allelic imbalance in tumor tissue can show strong segmentation. Their graphical presentation can be enhanced by appropriate smoothing. Existing signal and scatterplot smoothers do not respect segmentation well. We present novel algorithms that use a penalty on the norm of differences of neighboring values. Visualization is our main goal, but we compare classification performance to that of VEGA

    Bilinear modulation models for seasonal tables of counts

    Get PDF
    We propose generalized linear models for time or age-time tables of seasonal counts, with the goal of better understanding seasonal patterns in the data. The linear predictor contains a smooth component for the trend and the product of a smooth component (the modulation) and a periodic time series of arbitrary shape (the carrier wave). To model rates, a population offset is added. Two-dimensional trends and modulation are estimated using a tensor product B-spline basis of moderate dimension. Further smoothness is ensured using difference penalties on the rows and columns of the tensor product coefficients. The optimal penalty tuning parameters are chosen based on minimization of a quasi-information criterion. Computationally efficient estimation is achieved using array regression techniques, avoiding excessively large matrices. The model is applied to female death rate in the US due to cerebrovascular diseases and respiratory diseases

    Selection of tuning parameters in bridge regression models via Bayesian information criterion

    Full text link
    We consider the bridge linear regression modeling, which can produce a sparse or non-sparse model. A crucial point in the model building process is the selection of adjusted parameters including a regularization parameter and a tuning parameter in bridge regression models. The choice of the adjusted parameters can be viewed as a model selection and evaluation problem. We propose a model selection criterion for evaluating bridge regression models in terms of Bayesian approach. This selection criterion enables us to select the adjusted parameters objectively. We investigate the effectiveness of our proposed modeling strategy through some numerical examples.Comment: 20 pages, 5 figure

    Biogenesis of mitochondrial porin

    Get PDF
    We review here the present knowledge about the pathway of import and assembly of porin into mitochondria and compare it to those of other mitochondrial proteins. Porin, like all outer mitochondrial membrane proteins studied so far is made as a precursor without a cleavble lsquosignalrsquo sequence; thus targeting information must reside in the mature sequence. At least part of this information appears to be located at the amino-terminal end of the molecule. Transport into mitochondria can occur post-translationally. In a first step, the porin precursor is specifically recognized on the mitochondrial surface by a protease sensitive receptor. In a second step, porin precursor inserts partially into the outer membrane. This step is mediated by a component of the import machinery common to the import pathways of precursor proteins destined for other mitochondrial subcompartments. Finally, porin is assembled to produce the functional oligomeric form of an integral membrane protein wich is characterized by its extreme protease resistance

    Peptide Ligands for Pro-survival Protein Bfl-1 from Computationally Guided Library Screening

    Get PDF
    Pro-survival members of the Bcl-2 protein family inhibit cell death by binding short helical BH3 motifs in pro-apoptotic proteins. Mammalian pro-survival proteins Bcl-x[subscript L], Bcl-2, Bcl-w, Mcl-1, and Bfl-1 bind with varying affinities and specificities to native BH3 motifs, engineered peptides, and small molecules. Biophysical studies have determined interaction patterns for these proteins, particularly for the most-studied family members Bcl-x[subscript L] and Mcl-1. Bfl-1 is a pro-survival protein implicated in preventing apoptosis in leukemia, lymphoma, and melanoma. Although Bfl-1 is a promising therapeutic target, relatively little is known about its binding preferences. We explored the binding of Bfl-1 to BH3-like peptides by screening a peptide library that was designed to sample a high degree of relevant sequence diversity. Screening using yeast-surface display led to several novel high-affinity Bfl-1 binders and to thousands of putative binders identified through deep sequencing. Further screening for specificity led to identification of a peptide that bound to Bfl-1 with K[subscript d] < 1 nM and very slow dissociation from Bfl-1 compared to other pro-survival Bcl-2 family members. A point mutation in this sequence gave a peptide with ~50 nM affinity for Bfl-1 that was selective for Bfl-1 in equilibrium binding assays. Analysis of engineered Bfl-1 binders deepens our understanding of how the binding profiles of pro-survival proteins differ and may guide the development of targeted Bfl-1 inhibitors.National Institute of General Medical Sciences (U.S.) (Award GM084181)National Institute of General Medical Sciences (U.S.) (Award P50-GM68762

    Dynamic metabolomic data analysis: a tutorial review

    Get PDF
    In metabolomics, time-resolved, dynamic or temporal data is more and more collected. The number of methods to analyze such data, however, is very limited and in most cases the dynamic nature of the data is not even taken into account. This paper reviews current methods in use for analyzing dynamic metabolomic data. Moreover, some methods from other fields of science that may be of use to analyze such dynamic metabolomics data are described in some detail. The methods are put in a general framework after providing a formal definition on what constitutes a ‘dynamic’ method. Some of the methods are illustrated with real-life metabolomics examples
    corecore