326 research outputs found

    Towards the timely detection of toxicants

    Full text link
    We address the problem of enhancing the sensitivity of biosensors to the influence of toxicants, with an entropy method of analysis, denoted as CASSANDRA, recently invented for the specific purpose of studying non-stationary time series. We study the specific case where the toxicant is tetrodotoxin. This is a very poisonous substance that yields an abrupt drop of the rate of spike production at t approximatively 170 minutes when the concentration of toxicant is 4 nanomoles. The CASSANDRA algorithm reveals the influence of toxicants thirty minutes prior to the drop in rate at a concentration of toxicant equal to 2 nanomoles. We argue that the success of this method of analysis rests on the adoption of a new perspective of complexity, interpreted as a condition intermediate between the dynamic and the thermodynamic state.Comment: 6 pages and 3 figures. Accepted for publication in the special issue of Chaos Solitons and Fractal dedicated to the conference "Non-stationary Time Series: A Theoretical, Computational and Practical Challenge", Center for Nonlinear Science at University of North Texas, from October 13 to October 19, 2002, Denton, TX (USA

    Canonical and non-canonical equilibrium distribution

    Full text link
    We address the problem of the dynamical foundation of non-canonical equilibrium. We consider, as a source of divergence from ordinary statistical mechanics, the breakdown of the condition of time scale separation between microscopic and macroscopic dynamics. We show that this breakdown has the effect of producing a significant deviation from the canonical prescription. We also show that, while the canonical equilibrium can be reached with no apparent dependence on dynamics, the specific form of non-canonical equilibrium is, in fact, determined by dynamics. We consider the special case where the thermal reservoir driving the system of interest to equilibrium is a generator of intermittent fluctuations. We assess the form of the non-canonical equilibrium reached by the system in this case. Using both theoretical and numerical arguments we demonstrate that Levy statistics are the best description of the dynamics and that the Levy distribution is the correct basin of attraction. We also show that the correct path to non-canonical equilibrium by means of strictly thermodynamic arguments has not yet been found, and that further research has to be done to establish a connection between dynamics and thermodynamics.Comment: 13 pages, 6 figure

    Non-Poisson dichotomous noise: higher-order correlation functions and aging

    Full text link
    We study a two-state symmetric noise, with a given waiting time distribution ψ(τ)\psi (\tau), and focus our attention on the connection between the four-time and the two-time correlation functions. The transition of ψ(τ)\psi (\tau) from the exponential to the non-exponential condition yields the breakdown of the usual factorization condition of high-order correlation functions, as well as the birth of aging effects. We discuss the subtle connections between these two properties, and establish the condition that the Liouville-like approach has to satisfy in order to produce a correct description of the resulting diffusion process

    Facing Non-Stationary Conditions with a New Indicator of Entropy Increase: The Cassandra Algorithm

    Full text link
    We address the problem of detecting non-stationary effects in time series (in particular fractal time series) by means of the Diffusion Entropy Method (DEM). This means that the experimental sequence under study, of size NN, is explored with a window of size L<<NL << N. The DEM makes a wise use of the statistical information available and, consequently, in spite of the modest size of the window used, does succeed in revealing local statistical properties, and it shows how they change upon moving the windows along the experimental sequence. The method is expected to work also to predict catastrophic events before their occurrence.Comment: FRACTAL 2002 (Spain

    Scaling in Non-stationary time series I

    Full text link
    Most data processing techniques, applied to biomedical and sociological time series, are only valid for random fluctuations that are stationary in time. Unfortunately, these data are often non stationary and the use of techniques of analysis resting on the stationary assumption can produce a wrong information on the scaling, and so on the complexity of the process under study. Herein, we test and compare two techniques for removing the non-stationary influences from computer generated time series, consisting of the superposition of a slow signal and a random fluctuation. The former is based on the method of wavelet decomposition, and the latter is a proposal of this paper, denoted by us as step detrending technique. We focus our attention on two cases, when the slow signal is a periodic function mimicking the influence of seasons, and when it is an aperiodic signal mimicking the influence of a population change (increase or decrease). For the purpose of computational simplicity the random fluctuation is taken to be uncorrelated. However, the detrending techniques here illustrated work also in the case when the random component is correlated. This expectation is fully confirmed by the sociological applications made in the companion paper. We also illustrate a new procedure to assess the existence of a genuine scaling, based on the adoption of diffusion entropy, multiscaling analysis and the direct assessment of scaling. Using artificial sequences, we show that the joint use of all these techniques yield the detection of the real scaling, and that this is independent of the technique used to detrend the original signal.Comment: 39 pages, 13 figure

    Fractional Calculus as a Macroscopic Manifestation of Randomness

    Full text link
    We generalize the method of Van Hove so as to deal with the case of non-ordinary statistical mechanics, that being phenomena with no time-scale separation. We show that in the case of ordinary statistical mechanics, even if the adoption of the Van Hove method imposes randomness upon Hamiltonian dynamics, the resulting statistical process is described using normal calculus techniques. On the other hand, in the case where there is no time-scale separation, this generalized version of Van Hove's method not only imposes randomness upon the microscopic dynamics, but it also transmits randomness to the macroscopic level. As a result, the correct description of macroscopic dynamics has to be expressed in terms of the fractional calculus.Comment: 20 pages, 1 figur
    corecore