60 research outputs found

    Cognition based bTBI mechanistic criteria; a tool for preventive and therapeutic innovations

    Get PDF
    Blast-induced traumatic brain injury has been associated with neurodegenerative and neuropsychiatric disorders. To date, although damage due to oxidative stress appears to be important, the specific mechanistic causes of such disorders remain elusive. Here, to determine the mechanical variables governing the tissue damage eventually cascading into cognitive deficits, we performed a study on the mechanics of rat brain under blast conditions. To this end, experiments were carried out to analyse and correlate post-injury oxidative stress distribution with cognitive deficits on a live rat exposed to blast. A computational model of the rat head was developed from imaging data and validated against in vivo brain displacement measurements. The blast event was reconstructed in silico to provide mechanistic thresholds that best correlate with cognitive damage at the regional neuronal tissue level, irrespectively of the shape or size of the brain tissue types. This approach was leveraged on a human head model where the prediction of cognitive deficits was shown to correlate with literature findings. The mechanistic insights from this work were finally used to propose a novel helmet design roadmap and potential avenues for therapeutic innovations against blast traumatic brain injury

    An lntegrated Growth and Analysis System for In-Situ XAS Studies of Metal- Semiconductor Interactions

    No full text
    A UHV system for in-situ studies of metal-semiconductor interactions has been designed and assembled at North Carolina State University and recently installed and tested at the NSLS. The UHV system consists of interconnected deposition and analysis chambers, each of which is capable of maintaining a base pressure of approximately 1 x 10-10 Torr. Up to three materials can be co-deposited on 25 mm wafers by electron-beam evaporation. Substrate temperature can be controlled in the range 30-900 °C during deposition, and the growth process may be monitored with RHEED. The deposited materials and their reaction products can be studied in-situ with a variety of technique: XAFS, AES, XPS, UPS and ARXPS/UPS. We describe the capabilities of the system and present our first EXAFS results on the stabilization of Co + 2 Si films co-deposited on Si0.8Ge0.2 alloys. Preliminary results indicate that Co + 2Si forms a stable film on Si0.8Ge0.2 with a "CoSi2-like" reaction path. As is tie case with Co/Si0.8Ge0.2, silicide formation is complete at 700 °C. However, the Co+2Si/0.8Ge0.2 system does not undergo a CoSi→ CoSi2 transition when annealed at 500-700 °C, and exhibits only weak CoSi features in this.temperature range
    corecore