99 research outputs found

    Micro Talk Systems

    Get PDF
    This case focuses on a unique and often overlooked product market – sporting event timing systems and supplies – and involves a Japanese manufacturer of radio frequency identification (RFID)-based timing systems called Micro Talk Systems or MTS.  Some of the challenges facing MTS, as they begin to penetrate the U.S. timing market, include identifying the size and scope of the timing market, which market segment(s) should MTS focus on, what is the competitive advantage(s) MTS holds compared to other timing systems being marketed in the U.S., and which channel(s) of distribution would prove to be the most efficient and cost effective to use

    Phase shift keyed systems based on a gain switched laser transmitter

    Get PDF
    Return-to-Zero (RZ) and Non-Return-to-Zero (NRZ) Differential Phase Shift Keyed (DPSK) systems require cheap and optimal transmitters for widespread implementation. The authors report on a gain switched Discrete Mode (DM) laser that can be employed as a cost efficient transmitter in a 10.7 Gb/s RZ DPSK system and compare its performance to that of a gain switched Distributed Feed-Back (DFB) laser. Experimental results show that the gain switched DM laser readily provides error free performance and a receiver sensitivity of -33.1 dBm in the 10.7 Gbit/s RZ DPSK system. The standard DFB laser on the other hand displays an error floor at 10(-1) in the same RZ DPSK system. The difference in performance, between the two types of gain switched transmitters, is analysed by investigating their linewidths. We also demonstrate, for the first time, the generation of a highly coherent gain switched pulse train which displays a spectral comb of approximately 13 sidebands spaced by the 10.7 GHz modulation frequency. The filtered side-bands are then employed as narrow linewidth Continuous Wave (CW) sources in a 10.7 Gb/s NRZ DPSK system

    Lowloss mode coupler for mode-multiplexed transmission

    Get PDF
    Abstract: We present a novel low-loss 3-spot mode coupler to selectively address 6 spatial and polarization modes of a few-mode fiber. The coupler is used in a 6 Ă— 6 MIMO-transmission experiment over a 154-km hybrid span consisting of 129-km depressed-cladding and 25-km graded-index few-mode fiber

    Space Division Multiplexing in Optical Fibres

    Full text link
    Optical communications technology has made enormous and steady progress for several decades, providing the key resource in our increasingly information-driven society and economy. Much of this progress has been in finding innovative ways to increase the data carrying capacity of a single optical fibre. In this search, researchers have explored (and close to maximally exploited) every available degree of freedom, and even commercial systems now utilize multiplexing in time, wavelength, polarization, and phase to speed more information through the fibre infrastructure. Conspicuously, one potentially enormous source of improvement has however been left untapped in these systems: fibres can easily support hundreds of spatial modes, but today's commercial systems (single-mode or multi-mode) make no attempt to use these as parallel channels for independent signals.Comment: to appear in Nature Photonic

    The practice of early detection of cancer in the view of a general practicioner

    No full text
    • …
    corecore