33 research outputs found

    The SaPPART COST Action: Towards Positioning Integrity for Road Transport

    Get PDF
    Global Navigation Satellite Systems (GNSS) is becoming one of the main components supporting Intelligent Transport Systems (ITS) and value-added services in road transport and personal mobility. The use of GNSS is expected to grow significantly due to improvements in positioning performance, with positive impacts such as: finding the optimal route; improving traffic and travel efficiency as well as safety and security; reducing congestion and optimizing fuel consumption. The deployment of mission critical applications needs high reliability in the positioning information. However, the positioning reliability is not easy to achieve because of the heterogeneous quality of the GNSS signal, which is highly influenced by the road environment and the operational scenario of the application. It is important to understand the requirements and performance GNSS can achieve for various road transport applications. This paper is presenting the SaPPART COST Action on the Satellite Positioning Performance Assessment for Road Transport. It introduces the goal and the framework of the Action with the research programme and some related activities dedicated to dissemination and supporting standardisation working groups

    Mechanical failure analysis of thin film transistor devices on steel and polyimide substrates for flexible display applications

    Get PDF
    The crack onset strain (COS) of 4-level thin film transistor (TFT) devices on both steel foils and thin polyimide (PI) films was investigated using tensile experiments carried out in situ in an optical microscope. Cracks initiated first within the SiO2 insulator layer for both types of substrates. The COS was found to be equal to 1.15% and 0.24% for steel and PI, respectively. The influence of loading direction on failure of the TFT stack with anisotropic geometry was moreover found to be considerable, leading to recommendations for backplane design. The large difference in critical strain of the SiO2 layer on the two substrates was analyzed using an energy release rate approach, and found to result from differences in layer/substrate mechanical contrast and in internal stress state. Based on this analysis a correlation between layer/substrate elastic contrast and tensile failure behavior was devised. (C) 2010 Elsevier Ltd. All rights reserved

    Variable stars towards the bulge of M31: the AGAPE catalogue

    Full text link
    We present the AGAPE astrometric and photometric catalogue of 1579 variable stars in a 14'x10' field centred on M31. This work is the first survey devoted to variable stars in the bulge of M31. The R magnitudes of the objects and the B-R colours suggest that our sample is dominated by red long-period variable stars (LPV), with a possible overlap with Cepheid-like type II stars. Twelve nova candidates are identified. Correlations with other catalogues suggest that 2 novae could be recurrent novae and provide possible optical counterparts for 2 supersoft X-ray sources candidates observed with Chandra.Comment: 11 pages, Latex, accepted for publication in A&

    Measure of efficiency and knee isokinetic strength in bike messengers and non-cyclist athletes

    No full text
    Introduction: Gross efficiency (GE) appears to be correlated with strength. The purpose of this study was to investigate GE at 4 different pedaling rates (60, 70, 90, 100 rpm) and its relationship with maximal strength in a population of 8 bike messengers (BMs) and 8 experienced non-bicycle messenger (NBMs) athletes. Methods: Each of the 8 BMs, (mean age, 25.2 years ±3,2), who work in at a delivery company, who ride 218.7 (±65.1) km/week, and participate in an average of 19.6 (±11.1) hours of sport related exercise per week, and the 8 NBMs, (mean age 25.4 years ±2.2), who ride an average of 5 (+ 14.1) km/week and participate in an average of 6.5 (±3.8) hours of sport related exercise per week underwent 2 laboratory sessions. The first laboratory session determined Maximum Aerobic Power (MAP) and maximal oxygen consumption (VO2max) with steps of 30W/min. The second session included an efficiency test at 50% of MAP. GE, oxygen consumption (VO2), heart rate (HR) and Blood Lactate Concentration (BLC) were measured at four randomly selected cadences (60,70,90,100 rpm). The subjects then underwent an isokinetic test, 5 repetitions at 60°/sec and 20 repetitions at 120°/sec, to measure concentric strength for extension and flexion of both knees. Fatigability and peak torque/body weight ratio were then calculated. Results: A difference in GE (at 60, 90 100rpm), BLC (all cadences) and MAP/kg in favor of BMs was found (all P-value<0.05). No difference in VO2/VO2max (all cadences) was found (p-value>0.05). The most efficient cadence was 60 rpm in both groups. Increased cadence resulted in decreased GE and increased HR and VO2 in both groups. BLC only increased in the NBMs group. In both groups, a clear relationship between MAP/kg and low BLC was found. NBMs were found to have stronger hamstring muscles than BMs (p-value: 0.038). Few relationships between GE at different cadences, peak-torque/Bw or muscle fatigability were found. Discussion/Conclusion: BMs had a higher GE than NBMs. These results are in line with previously described analyses and are explained by higher aerobic capacity, better training status, different muscle fiber type, and better pedaling technique. At the same power output, anaerobic glycolysis, which is linked to lower economic GE, plays a greater role for NBMs. Stronger hamstring muscles of the NBMs might be explained by the diversity of their practiced sports and therefore their use of a greater diversity of muscle groups. Isokinetic knee maximal strength and fatigability was not linked with GE. Thus, isokinetic strength testing is not a good choice for evaluating GE in cycling

    Le titre exécutoire.

    No full text

    Massive separation control analysis of the pulsed jet actuators effects

    No full text
    The aerodynamic drag of simplified car geometry with small span and strongly separated wake can be reduced up 20% by using pulsed jet distributed along the rear window. Results show an enhancement of transversal wake size in the control region, a displacement of the mean positions of vortex wake structures, a decrease of velocities near the rear part and a reduction of vortex structure recirculation in the wake. These modifications produced by the control are analyzed, commented and model based on simple strategy to build efficient and suitable separation control strategy is proposed
    corecore