275 research outputs found

    Distinguishability of hyperentangled Bell state by linear evolution and local projective measurement

    Full text link
    Measuring an entangled state of two particles is crucial to many quantum communication protocols. Yet Bell state distinguishability using a finite apparatus obeying linear evolution and local measurement is theoretically limited. We extend known bounds for Bell-state distinguishability in one and two variables to the general case of entanglement in nn two-state variables. We show that at most 2n+112^{n+1}-1 classes out of 4n4^n hyper-Bell states can be distinguished with one copy of the input state. With two copies, complete distinguishability is possible. We present optimal schemes in each case.Comment: 5 pages, 2 figure

    Obtaining Self-similar Scalings in Focusing Flows

    Full text link
    The surface structure of converging thin fluid films displays self-similar behavior, as was shown in the work by Diez et al [Q. Appl. Math 210, 155, 1990]. Extracting the related similarity scaling exponents from either numerical or experimental data is non-trivial. Here we provide two such methods. We apply them to experimental and numerical data on converging fluid films driven by both surface tension and gravitational forcing. In the limit of pure gravitational driving, we recover Diez' semi-analytic result, but our methods also allow us to explore the entire regime of mixed capillary and gravitational driving, up to entirely surface tension driven flows. We find scaling forms of smoothly varying exponents up to surprisingly small Bond numbers. Our experimental results are in reasonable agreement with our numerical simulations, which confirm theoretically obtained relations between the scaling exponents.Comment: 11 pages, 11 figures, accepted for Phys Rev

    p-wave Feshbach molecules

    Full text link
    We have produced and detected molecules using a p-wave Feshbach resonance between 40K atoms. We have measured the binding energy and lifetime for these molecules and we find that the binding energy scales approximately linearly with magnetic field near the resonance. The lifetime of bound p-wave molecules is measured to be 1.0 +/- 0.1 ms and 2.3 +/- 0.2 ms for the m_l = +/- 1 and m_l = 0 angular momentum projections, respectively. At magnetic fields above the resonance, we detect quasi-bound molecules whose lifetime is set by the tunneling rate through the centrifugal barrier

    Interactions between cardiac activity and conscious somatosensory perception

    No full text
    Fluctuations in the heart's activity can modulate the access of external stimuli to consciousness. The link between perceptual awareness and cardiac signals has been investigated mainly in the visual and auditory domain. Here, we investigated whether the phase of the cardiac cycle and the prestimulus heart rate influence conscious somatosensory perception. We also tested how conscious detection of somatosensory stimuli affects the heart rate. Electrocardiograms (ECG) of 33 healthy volunteers were recorded while applying near‐threshold electrical pulses at a fixed intensity to the left index finger. Conscious detection was not uniformly distributed across the cardiac cycle but significantly higher in diastole than in systole. We found no evidence that the heart rate before a stimulus influenced its detection, but hits (correctly detected somatosensory stimuli) led to a more pronounced cardiac deceleration than misses. Our findings demonstrate interactions between cardiac activity and conscious somatosensory perception, which highlights the importance of internal bodily states for sensory processing beyond the auditory and visual domain

    Guided Quasicontinuous Atom Laser

    Full text link
    We report the first realization of a guided quasicontinuous atom laser by rf outcoupling a Bose-Einstein condensate from a hybrid optomagnetic trap into a horizontal atomic waveguide. This configuration allows us to cancel the acceleration due to gravity and keep the de Broglie wavelength constant at 0.5 μ\mum during 0.1 s of propagation. We also show that our configuration, equivalent to pigtailing an optical fiber to a (photon) semiconductor laser, ensures an intrinsically good transverse mode matching.Comment: version published in Phys. Rev. Lett. 97, 200402 (2006

    The potential energy of a 40^{40}K Fermi gas in the BCS-BEC crossover

    Full text link
    We present a measurement of the potential energy of an ultracold trapped gas of 40^{40}K atoms in the BCS-BEC crossover and investigate the temperature dependence of this energy at a wide Feshbach resonance, where the gas is in the unitarity limit. In particular, we study the ratio of the potential energy in the region of the unitarity limit to that of a non-interacting gas, and in the T=0 limit we extract the universal many-body parameter β\beta. We find β=0.540.12+0.05\beta = -0.54^{+0.05}_{-0.12}; this value is consistent with previous measurements using 6^{6}Li atoms and also with recent theory and Monte Carlo calculations. This result demonstrates the universality of ultracold Fermi gases in the strongly interacting regime
    corecore