886 research outputs found

    Electrical current distribution across a metal-insulator-metal structure during bistable switching

    Full text link
    Combining scanning electron microscopy (SEM) and electron-beam-induced current (EBIC) imaging with transport measurements, it is shown that the current flowing across a two-terminal oxide-based capacitor-like structure is preferentially confined in areas localized at defects. As the thin-film device switches between two different resistance states, the distribution and intensity of the current paths, appearing as bright spots, change. This implies that switching and memory effects are mainly determined by the conducting properties along such paths. A model based on the storage and release of charge carriers within the insulator seems adequate to explain the observed memory effect.Comment: 8 pages, 7 figures, submitted to J. Appl. Phy

    Characterization of the Active Site of Acetylcholinesterases by Application of Sterically Modified Acetylcholine Homologues

    Get PDF
    Our aim was to find steric limitations for the model of the active site of acetylcholinesterase and cho1inesterase. For thi<s purpose we used homologues of acetylcholine with hydrocarbon chains of increasing size at the cationic head. Catalysis of hydrolysis ceased for both enzymes, when the methyl groups of the cationic head of acetylcholine were substituted by three n-propyl groups. With data already documented in the literature and our additional experiments, under the same conditions, we were able to present models of the active sites for both enzymes

    Characterization of the Active Site of Acetylcholinesterases by Application of Sterically Modified Acetylcholine Homologues

    Get PDF
    Our aim was to find steric limitations for the model of the active site of acetylcholinesterase and cho1inesterase. For thi<s purpose we used homologues of acetylcholine with hydrocarbon chains of increasing size at the cationic head. Catalysis of hydrolysis ceased for both enzymes, when the methyl groups of the cationic head of acetylcholine were substituted by three n-propyl groups. With data already documented in the literature and our additional experiments, under the same conditions, we were able to present models of the active sites for both enzymes

    DISTRIBUTION AND KINETICS OF 14C-VECURONIUM IN RATS AND MICE

    Get PDF
    The distribution and kinetics of 14C-vecuronium were studied in rats and mice. 14C-Vecuronium accumulated rapidly in the liver. Both unchanged and metabolized vecuronium were excreted with the bile into the intestines and stomach. Reabsorption in the gut was probably responsible for an enterohepatic increase in radioactivity in the liver after one hour. Excretion through the kidneys increased continuously from low values after the initial peak. Binding in compartments with acid mucopolysaccharides such as cartilage, connective tissue etc., was less important. Bloodbrain barrier and placenta were permeable only to a small degre

    Simultaneous dynamic electrical and structural measurements of functional materials

    Get PDF
    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli

    Size Dependence of Metal-Insulator Transition in Stoichiometric Fe3O4 Nanocrystals

    Full text link
    Magnetite (Fe3O4) is one of the most actively studied materials with a famous metal-insulator transition (MIT), so-called the Verwey transition at around 123 K. Despite the recent progress in synthesis and characterization of Fe3O4 nanocrystals (NCs), it is still an open question how the Verwey transition changes on a nanometer scale. We herein report the systematic studies on size dependence of the Verwey transition of stoichiometric Fe3O4 NCs. We have successfully synthesized stoichiometric and uniform-sized Fe3O4 NCs with sizes ranging from 5 to 100 nm. These stoichiometric Fe3O4 NCs show the Verwey transition when they are characterized by conductance, magnetization, cryo-XRD, and heat capacity measurements. The Verwey transition is weakly size-dependent and becomes suppressed in NCs smaller than 20 nm before disappearing completely for less than 6 nm, which is a clear, yet highly interesting indication of a size effect of this well-known phenomena. Our current work will shed new light on this ages-old problem of Verwey transition.Comment: 18 pages, 4 figures, Nano Letters (accepted

    Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures

    Full text link
    A Landau-Ginsburg-Devonshire-type nonlinear phenomenological theory is presented, which enables the thermodynamic description of dense laminar polydomain states in epitaxial ferroelectric thin films. The theory explicitly takes into account the mechanical substrate effect on the polarizations and lattice strains in dissimilar elastic domains (twins). Numerical calculations are performed for PbTiO3 and BaTiO3 films grown on (001)-oriented cubic substrates. The "misfit strain-temperature" phase diagrams are developed for these films, showing stability ranges of various possible polydomain and single-domain states. Three types of polarization instabilities are revealed for polydomain epitaxial ferroelectric films, which may lead to the formation of new polydomain states forbidden in bulk crystals. The total dielectric and piezoelectric small-signal responses of polydomain films are calculated, resulting from both the volume and domain-wall contributions. For BaTiO3 films, strong dielectric anomalies are predicted at room temperature near special values of the misfit strain.Comment: 19 pages, 8 figure

    Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale

    Full text link
    Stable and switchable polarization of ferroelectric materials opens a possibility to electrically control their functional behavior. A particularly promising approach is to employ ferroelectric tunnel junctions where the polarization reversal in a ferroelectric barrier changes the tunneling current across the junction. Here, we demonstrate the reproducible tunneling electroresistance effect using a combination of Piezoresponse Force Microscopy (PFM) and Conducting Atomic Force Microscopy (C-AFM) techniques on nanometer-thick epitaxial BaTiO3 single crystal thin films on SrRuO3 bottom electrodes. Correlation between ferroelectric and electronic transport properties is established by the direct nanoscale visualization and control of polarization and tunneling current in BaTiO3 films. The obtained results show a change in resistance by about two orders of magnitude upon polarization reversal on a lateral scale of 20 nm at room temperature. These results are promising for employing ferroelectric tunnel junctions in non-volatile memory and logic devices, not involving charge as a state variable.Comment: 18 pages, 4 figure

    Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides

    Full text link
    Using a linear combination of atomic orbitals approach, we report a systematic comparison of various Density Functional Theory (DFT) and hybrid exchange-correlation functionals for the prediction of the electronic and structural properties of prototypical ferroelectric oxides. It is found that none of the available functionals is able to provide, at the same time, accurate electronic and structural properties of the cubic and tetragonal phases of BaTiO3_3 and PbTiO3_3. Some, although not all, usual DFT functionals predict the structure with acceptable accuracy, but always underestimate the electronic band gaps. Conversely, common hybrid functionals yield an improved description of the band gaps, but overestimate the volume and atomic distortions associated to ferroelectricity, giving rise to an unacceptably large c/ac/a ratio for the tetragonal phases of both compounds. This super-tetragonality is found to be induced mainly by the exchange energy corresponding to the Generalized Gradient Approximation (GGA) and, to a lesser extent, by the exact exchange term of the hybrid functional. We thus propose an alternative functional that mixes exact exchange with the recently proposed GGA of Wu and Cohen [Phys. Rev. B 73, 235116 (2006)] which, for solids, improves over the treatment of exchange of the most usual GGA's. The new functional renders an accurate description of both the structural and electronic properties of typical ferroelectric oxides.Comment: 13 pages, 4 figures, 7 table
    corecore