13,428 research outputs found

    Line Structure in the Spectrum of FU Orionis

    Full text link
    New high-resolution spectra of FU Ori, obtained with the HIRES spectrograph at the Keck I telescope in 2003-2006, make it possible to compare the optical line profiles with those predicted by the self-luminous accretion disk model. A dependence of line width on excitation potential and on wavelength, expected for a Keplerian disk, is definitely not present in the optical region, nor is the line duplicity due to velocity splitting. The absorption lines observed in the optical region of FU Ori must originate in or near the central object, and here their profiles are shown to be those expected of a rigidly rotating object. They can be fitted by a rapidly rotating (v sin i = 70 km/s) high-luminosity G-type star having a large dark polar spot, with axis inclined toward the line of sight. Over these years, the radial velocity of FU Ori has remained constant to within +/-0.3 km/s, so there is no indication that the star is a spectroscopic binary. These results apply to the optical region (λ<8800\lambda< 8800 \AA); more distant, cooler regions of the disk contribute in the infrared.Comment: 14 pages, 11 figures, accepted by A

    Periodic radial velocity variations in RU Lupi

    Full text link
    Context. RU Lup is a Classical T Tauri star with unusually strong emission lines, which has been interpreted as manifestations of accretion. Recently, evidence has accumulated that this star might have a variable radial velocity. Aims. We intended to investigate in more detail the possible variability in radial velocity using a set of 68 high-resolution spectra taken at the VLT (UVES), the AAT (UCLES) and the CTIO (echelle). Methods. Using standard cross-correlation techniques, we determined the radial velocity of RU Lup. We analysed these results with Phasedispersion minimization and the Lomb-Scargle periodogram and searched for possible periodicities in the obtained radial velocities. We also analysed changes in the absorption line shapes and the photometric variability of RU Lup. Results. Our analysis indicated that RU Lup exhibits variations in radial velocity with a periodicity of 3.71 days and an amplitude of 2.17 km/s. These variations can be explained by the presence of large spots, or groups of spots, on the surface of RU Lup. We also considered a low-mass companion and stellar pulsations as alternative sources for these variations but found these to be unlikely.Comment: 8 pages, 4 figures, Accepted by A&

    Bremsstrahlung radiation from the interaction of short laser pulses with dielectrics

    Full text link
    An intense, short laser pulse incident on a transparent dielectric can excite electrons from valence to the conduction band. As these electrons undergo scattering, both from phonons and ions, they emit bremsstrahlung radiation. Here we present a theory of bremsstrahlung emission appropriate for laser pulse-dielectric interactions. Simulations of the interaction, incorporating this theory, illustrate characteristics of the radiation (power, energy and spectra) for arbitrary ratios of electron collision frequency to radiation frequency. The conversion efficiency of laser pulse energy into bremsstrahlung radiation depends strongly on both the intensity and duration of the pulse, saturating at values of about 10e-5. Depending on whether the intensity is above or below the damage threshold of the material, the emission can originate either from the surface or the bulk of the dielectric respectively. The bremsstrahlung emission may provide a broadband light source for diagnostics

    Equilibrium and dynamics of a trapped superfluid Fermi gas with unequal masses

    Full text link
    Interacting Fermi gases with equal populations but unequal masses are investigated at zero temperature using local density approximation and the hydrodynamic theory of superfluids in the presence of harmonic trapping. We derive the conditions of energetic stability of the superfluid configuration with respect to phase separation and the frequencies of the collective oscillations in terms of the mass ratio and the trapping frequencies of the two components. We discuss the behavior of the gas after the trapping potential of a single component is switched off and show that, near a Feshbach resonance, the released component can still remain trapped due to many-body interaction effects. Explicit predictions are presented for a mixture of 6^6Li and 40^{40}K with resonant interaction.Comment: 4 pages, 2 figure

    Transient currents in a molecular photo-diode

    Full text link
    Light-induced charge transmission through a molecular junction (molecular diode) is studied in the framework of a HOMO-LUMO model and in using a kinetic description. Expressions are presented for the sequential (hopping) and direct (tunneling) transient current components together with kinetic equations governing the time-dependent populations of the neutral and charged molecular states which participate in the current formation. Resonant and off-resonant charge transmission processes are analyzed in detail. It is demonstrated that the transient currents are associated with a molecular charging process which is initiated by photo excitation of the molecule. If the coupling of the molecule to the electrodes is strongly asymmetric the transient currents can significantly exceed the steady state current.Comment: 17 pages, 12 figures, accepted for publication in Chemical Physic

    Unveiling extremely veiled T Tauri stars

    Get PDF
    Photospheric absorption lines in classical T Tauri stars (CTTS) are weak compared to normal stars. This so-called veiling is normally identified with an excess continuous emission formed in shock-heated gas at the stellar surface below the accretion streams. We have selected four stars (RW Aur A, RU Lup, S CrA NW and S CrA SE) with unusually strong veiling to make a detailed investigation of veiling versus stellar brightness and emission line strengths for comparisons to standard accretion models. We have monitored the stars photometrically and spectroscopically at several epochs. In standard accretion models a variable accretion rate will lead to a variable excess emission. Consequently, the stellar brightness should vary accordingly. We find that the veiling of absorption lines in these stars is strongly variable and usually so large that it would require the release of several stellar luminosities of potential energy. At states of very large line dilution, the correspondingly large veiling factors derived correlate only weakly with brightness. Moreover, the emission line strengths violate the expected trend of veiling versus line strength. The veiling can change dramatically in one night, and is not correlated with the phase of the rotation periods found for two stars. We show that in at least three of the stars, when the veiling becomes high, the photospheric lines become filled-in by line emission, which produces large veiling factors unrelated to changes in any continuous emission from shocked regions. We also consider to what extent extinction by dust and electron scattering in the accretion stream may affect veiling measures in CTTS. We conclude that the degree of veiling cannot be used as a measure of accretion rates in CTTS with rich emission line spectra.Comment: Accepted for publication in A&A Letters. New language-edited version. (4 pages, 3 figures
    • …
    corecore