25,540 research outputs found

    Multi-beam Energy Moments of Multibeam Particle Velocity Distributions

    Full text link
    High resolution electron and ion velocity distributions, f(v), which consist of N effectively disjoint beams, have been measured by NASA's Magnetospheric Multi-Scale Mission (MMS) observatories and in reconnection simulations. Commonly used standard velocity moments generally assume a single mean-flow-velocity for the entire distribution, which can lead to counterintuitive results for a multibeam f(v). An example is the (false) standard thermal energy moment of a pair of equal and opposite cold particle beams, which is nonzero even though each beam has zero thermal energy. By contrast, a multibeam moment of two or more beams has no false thermal energy. A multibeam moment is obtained by taking a standard moment of each beam and then summing over beams. In this paper we will generalize these notions, explore their consequences and apply them to an f(v) which is sum of tri-Maxwellians. Both standard and multibeam energy moments have coherent and incoherent forms. Examples of incoherent moments are the thermal energy density, the pressure and the thermal energy flux (enthalpy flux plus heat flux). Corresponding coherent moments are the bulk kinetic energy density, the RAM pressure and the bulk kinetic energy flux. The false part of an incoherent moment is defined as the difference between the standard incoherent moment and the corresponding multibeam moment. The sum of a pair of corresponding coherent and incoherent moments will be called the undecomposed moment. Undecomposed moments are independent of whether the sum is standard or multibeam and therefore have advantages when studying moments of measured f(v).Comment: 27 single-spaced pages. Three Figure

    Volunteer studies replacing animal experiments in brain research - Report and recommendations of a Volunteers in Research and Testing workshop

    Get PDF

    Study of the de Almeida-Thouless line using power-law diluted one-dimensional Ising spin glasses

    Get PDF
    We test for the existence of a spin-glass phase transition, the de Almeida-Thouless line, in an externally-applied (random) magnetic field by performing Monte Carlo simulations on a power-law diluted one-dimensional Ising spin glass for very large system sizes. We find that an Almeida-Thouless line only occurs in the mean field regime, which corresponds, for a short-range spin glass, to dimension d larger than 6.Comment: 4 pages, 2 figures, 1 tabl

    An explanation of the Newman-Janis Algorithm

    Full text link
    After the original discovery of the Kerr metric, Newman and Janis showed that this solution could be ``derived'' by making an elementary complex transformation to the Schwarzschild solution. The same method was then used to obtain a new stationary axisymmetric solution to Einstein's field equations now known as the Kerr-newman metric, representing a rotating massive charged black hole. However no clear reason has ever been given as to why the Newman-Janis algorithm works, many physicist considering it to be an ad hoc procedure or ``fluke'' and not worthy of further investigation. Contrary to this belief this paper shows why the Newman-Janis algorithm is successful in obtaining the Kerr-Newman metric by removing some of the ambiguities present in the original derivation. Finally we show that the only perfect fluid generated by the Newman-Janis algorithm is the (vacuum) Kerr metric and that the only Petrov typed D solution to the Einstein-Maxwell equations is the Kerr-Newman metric.Comment: 14 pages, no figures, submitted to Class. Quantum Gra

    Dynamical Exchanges in Facilitated Models of Supercooled liquids

    Full text link
    We investigate statistics of dynamical exchange events in coarse--grained models of supercooled liquids in spatial dimensions d=1d=1, 2, and 3. The models, based upon the concept of dynamical facilitation, capture generic features of statistics of exchange times and persistence times. Here, distributions for both times are related, and calculated for cases of strong and fragile glass formers over a range of temperatures. Exchange time distributions are shown to be particularly sensitive to the model parameters and dimensions, and exhibit more structured and richer behavior than persistence time distributions. Mean exchange times are shown to be Arrhenius, regardless of models and spatial dimensions. Specifically, c2 \sim c^{-2}, with cc being the excitation concentration. Different dynamical exchange processes are identified and characterized from the underlying trajectories. We discuss experimental possibilities to test some of our theoretical findings.Comment: 11 pages, 14 figures, minor corrections made, paper published in Journal of Chemical Physic

    Limit curve theorems in Lorentzian geometry

    Full text link
    The subject of limit curve theorems in Lorentzian geometry is reviewed. A general limit curve theorem is formulated which includes the case of converging curves with endpoints and the case in which the limit points assigned since the beginning are one, two or at most denumerable. Some applications are considered. It is proved that in chronological spacetimes, strong causality is either everywhere verified or everywhere violated on maximizing lightlike segments with open domain. As a consequence, if in a chronological spacetime two distinct lightlike lines intersect each other then strong causality holds at their points. Finally, it is proved that two distinct components of the chronology violating set have disjoint closures or there is a lightlike line passing through each point of the intersection of the corresponding boundaries.Comment: 25 pages, 1 figure. v2: Misprints fixed, matches published versio

    Color Dynamics in External Fields

    Full text link
    We investigate the vacuum dynamics of U(1), SU(2), and SU(3) lattice gauge theories in presence of external (chromo)magnetic fields, both in (3+1) and (2+1) dimensions. We find that the critical coupling for the phase transition in compact U(1) gauge theory is independent of the strength of an external magnetic field. On the other hand we find that, both in (3+1) and (2+1) dimensions, the deconfinement temperature for SU(2) and SU(3) gauge systems in a constant abelian chromomagnetic field decreases when the strength of the applied field increases. We conclude that the dependence of the deconfinement temperature on the strength of an external constant chromomagnetic field is a peculiar feature of non abelian gauge theories and could be useful to get insight into color confinement.Comment: 26 pages, 14 figure

    The Universal Cut Function and Type II Metrics

    Get PDF
    In analogy with classical electromagnetic theory, where one determines the total charge and both electric and magnetic multipole moments of a source from certain surface integrals of the asymptotic (or far) fields, it has been known for many years - from the work of Hermann Bondi - that energy and momentum of gravitational sources could be determined by similar integrals of the asymptotic Weyl tensor. Recently we observed that there were certain overlooked structures, {defined at future null infinity,} that allowed one to determine (or define) further properties of both electromagnetic and gravitating sources. These structures, families of {complex} `slices' or `cuts' of Penrose's null infinity, are referred to as Universal Cut Functions, (UCF). In particular, one can define from these structures a (complex) center of mass (and center of charge) and its equations of motion - with rather surprising consequences. It appears as if these asymptotic structures contain in their imaginary part, a well defined total spin-angular momentum of the source. We apply these ideas to the type II algebraically special metrics, both twisting and twist-free.Comment: 32 page

    Signatures of Secondary Collisionless Magnetic Reconnection Driven by Kink Instability of a Flux Rope

    Full text link
    The kinetic features of secondary magnetic reconnection in a single flux rope undergoing internal kink instability are studied by means of three-dimensional Particle-in-Cell simulations. Several signatures of secondary magnetic reconnection are identified in the plane perpendicular to the flux rope: a quadrupolar electron and ion density structure and a bipolar Hall magnetic field develop in proximity of the reconnection region. The most intense electric fields form perpendicularly to the local magnetic field, and a reconnection electric field is identified in the plane perpendicular to the flux rope. An electron current develops along the reconnection line in the opposite direction of the electron current supporting the flux rope magnetic field structure. Along the reconnection line, several bipolar structures of the electric field parallel to the magnetic field occur making the magnetic reconnection region turbulent. The reported signatures of secondary magnetic reconnection can help to localize magnetic reconnection events in space, astrophysical and fusion plasmas
    corecore