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We test for the existence of a spin-glass phase transitiendé Almeida-Thouless line, in an externally-
applied (random) magnetic field by performing Monte Carlowdations on a power-law diluted one-
dimensional Ising spin glass for very large system sizes.fikidethat an Almeida-Thouless line only occurs
in the mean field regime, which corresponds, for a shorteapin glass, to dimensiahlarger than 6.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q

Perhaps the most surprising prediction of the mean-fieldnteracts with every other spin in the system with a strength
theory of spin glasses is that an Ising spin glass has a linehich falls off with a power of the distance. By varying the
of transitions in an external magnetic field, the de Almeida-power, one can simulate the whole range of possible behav-
Thouless (AT) |EL] line. This instability line separates aiors BD’B&] from infinite-range, through mean field, to non
high-temperature high-field paramagnetic phase wherg-relamean field and finally to the absence of a finite-temperature
ation times—possibly very large—stay finite, from a low- transition. This is analogous to changing the space diroansi
temperature low-field phase where the energy landscape hdsof short-range finite-dimensional models. KY found that
valleys separated by truly infinite barriers in the thermody an AT line does occur for parameter values corresponding to
namic limit. The AT line, an ergodic to non-ergodic trarmiti  the mean-field case (for short-range systems that wouldrbe fo
with no change in symmetry, is perhaps the most striking pred > 6), but not in the non-mean-field casé € 6). The pos-
diction of the mean-field theory of spin glasses. Whether osibility of a critical dimension above which the AT line oasu
not it occurs in realistic systems is a major unsolved proble had been considered before, see for example the discussion i

The existence or otherwise absence of an AT line in reaﬁef‘ [9].

(short-range) spin glasses is also a key feature distihongs ¢ III\/IodeI an(tj g)bsetrr\]/atgis[.JTThefmodel i;Ud'tedbelKY 1S
the two most popular scenarios for the nature of the spin-u y connected so the Ime for one Vlonte t.arlo sweep

5 . : .
glass state below the (zero-field) transition temperattire: (MCS) grows as)(L"), whereL is the number of spins. This

replica-symmetry breaking (RSB) picture of Parlgi [2], ang'S inefficient for largel.. Recently, this difficulty was removed
the “droplet picture” of Fisher and Hude B 4]. The RSB pic- Inan elegantway.m Re@.O] by d|Iut|r.19 the interactionslan
ture assumes that the behavior of re&lll spin glasses is very si fixing the connectivity:. We thus study:

ilar to that of the mean-field solutioh/[2] of the Sherrington

Kirkpatrick infinite-range model. Since the mean-field miode H=- Z €ij:Jij 95 = Z hiSi, (1)
has a stable spin-glass state in a field and thus has an AT line, e !

itis proposed that thialso occurs for any short-range system yhereS; = +1 are Ising spins evenly distributed on a ring
with a finite temperature transition in zero field. By contyas of |ength Z in order to ensure periodic boundary conditions.
the droplet picture makes certain assumptions about the nghe sum is over all spins on the chain and the couplifigs
ture of the low-energy, large-scale excitations (dropfen  are normally distributed with zero mean and standard devia-
which one findsio AT line in any dimension tion unity (independent of distance). The dilution matrjx

Experimentally, it has been harder to determine if an ATtakes values or 0, and a nonzero entry appears with probabil-
line occurs than to show that there is a transition in zerd fiel 1ty pij, Wherep; ~ r > with r;; = (L /) sin(x|i — j| /L)
For the latter case the divergence of the nonlinear sudiepti fepresenting the geometric distance between the spins. The
ity provides a clear signature of the transition. Unfortiehg ~ POWero is a key parameter of the model. To avoid the prob-
the nonlinear susceptibility does not diverge in a field,, i.e @bility of placing a bond being larger thana short-distance
along the AT line. However, as noted by two of Us [5] there iscutoff is applied and thus we take
a closely-related static quantity which diverges on theiAg | I
and which can be measured in simulations, albeit not in ex- 2%
periments. A finite-size scaling analysis of the two-pomtc pig = 1= exp(=A/rif) , = ; piL- 2)
relation length indicated the absence of an AT line for three -
dimensional (3D) Ising spin glassé} l[__ii 6]. Subsequertéy, t The constant is determined numerically by fixing the aver-
same idea was applied to a one-dimensional (1D) model imge coordination number Note that this model has the same

Ref. ﬁ] (referred to from now on as KY), in which every spin long range interactions on avera@l-fj]av ~ 1/r§;’, asinKY,
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but has onlyLz/2 bonds rather thal (L — 1)/2. Hence the scaling,
linear scaling of the CPU time for one MCS.

As in the fully-connected casél [7], by varyimgone can §o/L~ X[Ll/U(T = To)] o>2/3
tune the model in Eq[{1) from the infinite-range to the short- EL/LYP ~ X[LV3(T —T.)], 1/2 <0 <2/3, (6)
range universality class. For< o < 1/2 the model is in the
infinite-range universality class in the sense that thematar ~ With v = 1/(20 — 1) in the mean-field regime|[8]. Hence, if
A vanishes fotV — oo, and fore = 0 it corresponds to the  there is a transition & = T, data foré, /L (¢../L*/* in the
Viana-Bray model[[11]. Fot/2 < ¢ < 2/3 the model de- Mean field region) for different system sizéshould cross at
scribes a mean-field long-range spin glass, correspondimg—Zc-
the analogy with short-range systems—to a short-range mode We also present data fors¢ = xsc(0), which has the
i[lrﬁjimension above the upper critical dimensibir d, = 6 finite-size scaling form

]. For2/3 < ¢ < 1 the model has non-mean-field critical _ 5
behavior vCith a finite transition temperatufe. Foro > 1, xsa ~ L2 e[V (T - T.)) o>2/3
the transition temperature is zero. We are interested itefini xse ~ L'Y3C[LV3(T - T.)], 1/2<0<2/3. (7)
range models which have a non-z&igi.e.1/2 < o < 1.

A rough correspondence between a value af the long-
range 1D model and the value of a space dimengiam a
short-range model can be obtained from

Hence curves ofysq/L?>" (xsq/L'? in the mean-field
regime) should also intersect. This is particularly usédul
long-range models since is given by the naive expression
2 —n =20 — 1 exactly
2 — n(d) As discussed in KY, for the simulations to be in equilibrium
d=—— (3)  with Gaussian fields and bonds, the following equality must
hold:

where 7(d) is the critical exponent for the short-range 1 72
model, which is zero in the mean-field regime. Equatidn (3) U(Gr,q) = —= [_ (1— ql)] - Ri-gq), 8
has the following required properties {)— oo corresponds TlL T
to o — 1/2, (ii) the upper critical dimensiod,, = 6 cor- whereq — L1 .[(Si)2]. is the spin overlapd —
responds ter, = 2/3, and (iii) the lower critical dimension, 1 Zi,j Eij@gﬁ%z is the link overlap of a given sample,

which is wherel, —2+n(d;) = 0, correspondste; = 1. For b

. B . and N, is the number of nonzero bonds of the sample. To
example,l_n 3Dy = 0.384(9) [1] and thus the corresponding speed up equilibration we use the parallel tempering (ex-
exponentisr ~ 0.90.

: L change) Monte Carlo metho 18]. Simulations are per-
In this study we set the average coordination number t ge) mﬂﬂ ] P

_ 6and ite-d dent random fi h ¢ Jormed at zero field, as well as &tz = 0.1, a value consid-
Zay = O @nd use siie-dependent random igfigdehosen from erably smaller thaff.(Hr = 0) for the values ot studied.
a Gaussian distribution with zero mefin]., = 0 and stan-

h 1172 For details see Tab[& I.
dard deviationh;]at” = Hgr. The latter has the advantage Resylts.— We start by showing in Fi§l1(a) data fr /L
that we can perform a detailed test for equilibration of theagainsﬂ“ for ¢ = 0.75 in zero field, for several system sizes.
data when using Gaussian-distributed interactior’s {7(%8  The data intersect cleanly & ~ 1.50 indicating a transition
below). _ _ _ at that point, see EqJ(6). The inset shows;/L>~" using

To determine the existence of an AT line, we compute thgne exact valug = 1.5.
two-point finite-size correlation lengthl [5.115.116]. Forsth In contrast to Fig11(a), which shows the expected zero-field
we start by determining the wave-vector-dependent s@Bssgl  transition fors = 0.75, Fig.[D(b) shows no intersections in a

av

susceptibility given by small field Hr = 0.1 [approximately0.067 of the zero-field
1 ) T. shown in Fig[l(a)]. Thus there is no AT line fer= 0.75,
xsa(k) = — Z [(<5i5j>T — <Si>T<Sj>T) } et (=) except possibly for even smaller values of the field. Noté tha
L i av o = 0.75 is in the non-mean-field regim&/(3 < o < 1).

(4)  Whereas the data far = 0.75 for small sizes merge, and it
where(- - - )7 denotes a thermal average gnd |, an aver- is only for thelarger sizes that the data do not even meet, for
age over the disorder. To avoid bias, each thermal average = 0.85—deeper in the non-mean-field regime—even the
is obtained from a separate copy of the spins, so we simwdata for small sizes do not meet at any temperature down to
late four copies at each temperature. The correlationieisgt 7" = 0.30, see Fig[IL(c).
given by E’] For comparison we also show data in the mean-field regime

where an AT line is expected to occlif [7]. Fer= 0.60 and

Hr = 0.1 there is a clear intersection, see Hiyj. 1(d). The
’ (5) temperature of the intersections is slightly differentia two

cases, about 1.60 fgr, /L%/% and about 1.75 fokxsq /L3,
wherek,, = 27/ L is the smallest non-zero wave-vector com- suggesting finite-size effects, possibly due to long negati
patible with the boundary conditions. According to finitees  tails in the spin overlap distribution; see Higj. 2 and @.][1

-1

£ 1 [ xsc(0)

1/(20—1)
" 2sin(km/2) | xsG (km) ]
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FIG. 1: (Color online) Panel (a) Finite-size correlationdéh divided byL as a function ofl" for different sizes forHr = 0 ando = 0.75
(non-mean-field region). The inset showsc /L?~" using the exact valug = 3 — 20 = 1.5. In both cases the data cross indicating a
phase transition at zero field. Panel (b): Same as (a) buffoe= 0.1. The absence of an intersection down to [Bvghows that there is no
transition in a field [the shaded area correspond&.fdir = 0)]. The inset shows data for a bimodat () distribution of bonds, as used in
Ref. [19], for sizes. = 256 to 1024 on a linear topology. While Ref,_[1L9] find a finite-temperattransition (shaded area in the inset) we see
no sign of it. The absence of a transition is even more clepairel (c) where we show data as in (b) butdo= 0.85, i.e., deeper into the
non-mean-field regime. In panel (d) we show data for the tatiom length divided by..”/? (= L5/3) as a function ofl” for different sizes
for Hz = 0.1 ando = 0.60 (in the mean-field region). The inset shows: /L'/3. The intersections show that there is a transition in a field,
i.e., an AT line for this value of.

We note that very recent work by Leuzi al. HE] comes disorder and geometry as used in Refl [19], as well as the same
to a different conclusion. Using Ed.(1) with bimodally- field ando values, finding no signature of a transition [see the
distributed disorder they find a transition in a field in th&no inset to Fig[dL(b)].
mean-field regime, in particular fer = 0.75 and Hg = 0.1, Summary.— Our conclusion, based on numerical results,
where we do not find a transition, see Hig. 1(b). We havés that there is an “upper critical dimension” closesttor the
no explanation for this discrepancy. We have done severaT line. This agrees with KY but disagrees with Ref.|[19].
checks, including developing two versions of the code indeThis conclusion is distinct from RSB theoty [2] which pretsic
pendently and verifying that they give the same results- Furan AT line in any space dimension with a zero-field transjtion
thermore, we have simulated the model with the same bimodaind the droplet picturé:I[E] 4], according to which therads
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FIG. 2: (Color online) Distribution of the spin overlapfor o =
0.75, T = 0.71 and Hr = 0.1. Even for the largesk studied there
is a tail which extends into the negatiyeegion.

TABLE I: Parameters of the simulations for different fieldestgths
Hr and exponents. N, is the number of samplesys, is the
total number of Monte Carlo sweef&yin is the lowest temperature

4

AT line in any finite dimensiorOf course the numerical data
cannot rule out a transition aktremelysmall fields.

Note added in proof: We have recently heard (G. Parisi,
private communication) that there is an error in the analgsi
Ref. Esb], and that their results fer = 0.75 are now much
more similar to ours.
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