2,943 research outputs found

    Myopic PPPs: Risk allocation and hidden liabilities for taxpayers and users

    Get PDF
    Drawing on evidence from three case studies, we show how the State's Financial Liability has worked in assigning risk in large PPP contracts in Spain. Project failure and the concessionaires' bankruptcy have resulted in the government having to assume heavy financial obligations, which have ultimately been absorbed by taxpayers and users. In contrast, Spain's leading construction companies, which were also major investors in the concessionaires, have been able to minimize their risk. Myopic PPPs have been entered into based on the transference of liabilities to taxpayers and users, and the, consequent, minimization of risks for the main private investors

    Ergodicity Breaking in a Deterministic Dynamical System

    Full text link
    The concept of weak ergodicity breaking is defined and studied in the context of deterministic dynamics. We show that weak ergodicity breaking describes a weakly chaotic dynamical system: a nonlinear map which generates subdiffusion deterministically. In the non-ergodic phase non-trivial distribution of the fraction of occupation times is obtained. The visitation fraction remains uniform even in the non-ergodic phase. In this sense the non-ergodicity is quantified, leading to a statistical mechanical description of the system even though it is not ergodic.Comment: 11 pages, 4 figure

    Grid-scale Fluctuations and Forecast Error in Wind Power

    Get PDF
    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error (eτe_{\tau}) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error (eζe_{\zeta}) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no aa prioripriori knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error (eτe_{\tau}) and the scaling error (eζe_{\zeta})

    Electromagnetic radiation produces frame dragging

    Full text link
    It is shown that for a generic electrovacuum spacetime, electromagnetic radiation produces vorticity of worldlines of observers in a Bondi--Sachs frame. Such an effect (and the ensuing gyroscope precession with respect to the lattice) which is a reminiscence of generation of vorticity by gravitational radiation, may be linked to the nonvanishing of components of the Poynting and the super--Poynting vectors on the planes othogonal to the vorticity vector. The possible observational relevance of such an effect is commented.Comment: 8 pages RevTex 4-1; updated version to appear in Physical Review

    Reference frames and rigid motions in relativity: Applications

    Full text link
    The concept of rigid reference frame and of constricted spatial metric, given in the previous work [\emph{Class. Quantum Grav.} {\bf 21}, 3067,(2004)] are here applied to some specific space-times: In particular, the rigid rotating disc with constant angular velocity in Minkowski space-time is analyzed, a new approach to the Ehrenfest paradox is given as well as a new explanation of the Sagnac effect. Finally the anisotropy of the speed of light and its measurable consequences in a reference frame co-moving with the Earth are discussed.Comment: 13 pages, 1 figur

    Conserved superenergy currents

    Get PDF
    We exploit once again the analogy between the energy-momentum tensor and the so-called ``superenergy'' tensors in order to build conserved currents in the presence of Killing vectors. First of all, we derive the divergence-free property of the gravitational superenergy currents under very general circumstances, even if the superenergy tensor is not divergence-free itself. The associated conserved quantities are explicitly computed for the Reissner-Nordstrom and Schwarzschild solutions. The remaining cases, when the above currents are not conserved, lead to the possibility of an interchange of some superenergy quantities between the gravitational and other physical fields in such a manner that the total, mixed, current may be conserved. Actually, this possibility has been recently proved to hold for the Einstein-Klein-Gordon system of field equations. By using an adequate family of known exact solutions, we present explicit and completely non-obvious examples of such mixed conserved currents.Comment: LaTeX, 19 pages; improved version adding new content to the second section and some minor correction

    Spectral state dependence of the 0.4-2 MeV polarized emission in Cygnus X-1 seen with INTEGRAL/IBIS, and links with the AMI radio data

    Get PDF
    Polarization of the >~400 keV hard tail of the microquasar Cygnus X-1 has been independently reported by INTEGRAL/IBIS, and INTEGRAL/SPI and interpreted as emission from a compact jet. These conclusions were, however, based on the accumulation of all INTEGRAL data regardless of the spectral state. We utilize additional INTEGRAL exposure accumulated until December 2012, and include the AMI/Ryle (15 GHz) radio data in our study. We separate the observations into hard, soft, and intermediate/transitional states and detect radio emission from a compact jet in hard and intermediate states, but not in the soft. The 10-400 keV INTEGRAL (JEM-X and IBIS) state resolved spectra are well modeled with thermal Comptonization and reflection components. We detect a hard tail in the 0.4-2 MeV range for the hard state only. We extract the state dependent polarigrams of Cyg X-1, which all are compatible to no or undetectable level of polarization except in 400-2000 keV range in the hard state where the polarization fraction is 75±\pm32 % and the polarization angle 40.0 +-14 deg. An upper limit on the 0.4-2 MeV soft state polarization fraction is 70%. Due to the short exposure, we obtain no meaningful constraint for the intermediate state. The likely detection of a >400 keV polarized tail in the hard state, together with the simultaneous presence of a radio jet, reinforce the notion of a compact jet origin of the 400 keV emission.Comment: 13 pages, 5 figures, accepted for publication in Ap

    Integration of quality of service in avionics architecture

    Get PDF
    International audienceTraditionally, avionics systems have followed a federated approach - separate software functions al- located to dedicated (often physically disjoint) com-puting ”black-boxes”

    The principle of equivalence and projective structure in space-times

    Get PDF
    This paper discusses the extent to which one can determine the space-time metric from a knowledge of a certain subset of the (unparametrised) geodesics of its Levi-Civita connection, that is, from the experimental evidence of the equivalence principle. It is shown that, if the space-time concerned is known to be vacuum, then the Levi-Civita connection is uniquely determined and its associated metric is uniquely determined up to a choice of units of measurement, by the specification of these geodesics. It is further demonstrated that if two space-times share the same unparametrised geodesics and only one is assumed vacuum then their Levi-Civita connections are again equal (and so the other metric is also a vacuum metric) and the first result above is recovered.Comment: 23 pages, submitted to Classical and Quantum Gravit

    On the Energy-Momentum Density of Gravitational Plane Waves

    Full text link
    By embedding Einstein's original formulation of GR into a broader context we show that a dynamic covariant description of gravitational stress-energy emerges naturally from a variational principle. A tensor TGT^G is constructed from a contraction of the Bel tensor with a symmetric covariant second degree tensor field Φ\Phi and has a form analogous to the stress-energy tensor of the Maxwell field in an arbitrary space-time. For plane-fronted gravitational waves helicity-2 polarised (graviton) states can be identified carrying non-zero energy and momentum.Comment: 10 pages, no figure
    • …
    corecore