1,475 research outputs found
Mechanoregulation of bone remodeling and healing as inspiration for self-repair in materials
The material bone has attracted the attention of material scientists due to its fracture resistance and ability to self-repair. A mechanoregulated exchange of damaged bone using newly synthesized material avoids the accumulation of fatigue damage. This remodeling process is also the basis for structural adaptation to common loading conditions, thereby reducing the probability of material failure. In the case of fracture, an initial step of tissue formation is followed by a mechanobiological controlled restoration of the pre-fracture state. The present perspective focuses on these mechanobiological aspects of bone remodeling and healing. Specifically, the role of the control function is considered, which describes mechanoregulation as a link between mechanical stimulation and the local response of the material through changes in structure or material properties. Mechanical forces propagate over large distances leading to a complex non-local feedback between mechanical stimulation and material response. To better understand such phenomena, computer models are often employed. As expected from control theory, negative and positive feedback loops lead to entirely different time evolutions, corresponding to stable and unstable states of the material system. After some background information about bone remodeling and healing, we describe a few representative models, the corresponding control functions, and their consequences. The results are then discussed with respect to the potential design of synthetic materials with specific self-repair properties
Kinetics of Joint Ordering and Decomposition in Binary Alloys
We study phase segregation in a model alloy undergoing both ordering and
decomposition, using computer simulations of Kawasaki exchange dynamics on a
square lattice. Following a quench into the miscibility gap we observe an early
stage in which ordering develops while the composition remains almost uniform.
Then decomposition starts with segregation into ordered and disordered phases.
The two spherically averaged structure functions, related to decomposition and
to ordering, were both observed to obey scaling rules in the late coarsening
stage where the time increase of the characteristic lengths was consistent with
. While  was similar for ordering and decomposition at low
concentration of the minority component, it showed an increase (decrease) with
concentration for ordering (decomposition). The domain morphology was found to
depend on the concentration of the minority component, in a way that suggests a
wetting of antiphase boundaries in the ordered domains by the disordered phase.Comment: 23 pages, in TeX, figues available upon reques
Kawasaki-type Dynamics: Diffusion in the kinetic Gaussian model
In this article, we retain the basic idea and at the same time generalize
Kawasaki's dynamics, spin-pair exchange mechanism, to spin-pair redistribution
mechanism, and present a normalized redistribution probability. This serves to
unite various order-parameter-conserved processes in microscopic, place them
under the control of a universal mechanism and provide the basis for further
treatment. As an example of the applications, we treated the kinetic Gaussian
model and obtained exact diffusion equation. We observed critical slowing down
near the critical point and found that, the critical dynamic exponent z=1/nu=2
is independent of space dimensionality and the assumed mechanism, whether
Glauber-type or Kawasaki-type.Comment: accepted for publication in PR
Modelling of Phase Separation in Alloys with Coherent Elastic Misfit
Elastic interactions arising from a difference of lattice spacing between two
coherent phases can have a strong influence on the phase separation
(coarsening) of alloys. If the elastic moduli are different in the two phases,
the elastic interactions may accelerate, slow down or even stop the phase
separation process. If the material is elastically anisotropic, the
precipitates can be shaped like plates or needles instead of spheres and can
form regular precipitate superlattices. Tensions or compressions applied
externally to the specimen may have a strong effect on the shapes and
arrangement of the precipitates. In this paper, we review the main theoretical
approaches that have been used to model these effects and we relate them to
experimental observations. The theoretical approaches considered are (i)
`macroscopic' models treating the two phases as elastic media separated by a
sharp interface (ii) `mesoscopic' models in which the concentration varies
continuously across the interface (iii) `microscopic' models which use the
positions of individual atoms.Comment: 106 pages, in Latex, figures available upon request, e-mail
  addresses: [email protected], [email protected],
  [email protected], submitted to the Journal of Statistical Physic
Toughening in electrospun fibrous scaffolds
Electrospun scaffolds mimic the microstructure of structural collagenous tissues and have been widely used in tissue engineering applications. Both brittle cracking and ductile failure have been observed in scaffolds with similarly random fibrous morphology. Finite element analysis can be used to qualitatively examine the mechanics of these differing failure mechanisms. The finite element modeling demonstrates that the noncontinuum deformation of the network structure results in fiber bundle formation and material toughening. Such toughening is accommodated by varying fiber properties, including allowing large failure strains and progressive damage of the fibers.The authors acknowledge the support from the Ministry of Higher Education Malaysia, Khaow
Tonsomboon, Daniel Strange, and Anne Bahnweg.This is the final published version. It first appeared at http://scitation.aip.org/content/aip/journal/aplmater/3/1/10.1063/1.4901450
Sporopollenin, a natural copolymer, is robust under high hydrostatic pressure
Lycopodium sporopollenin, a natural copolymer, shows exceptional stability under high hydrostatic pressures (10 GPa) as determined by in situ high pressure synchrotron source FTIR spectroscopy. This stability is evaluated in terms of the component compounds of the sporopollenin: p-coumaric acid, phloretic acid, ferulic acid, and palmitic and sebacic acids, which represent the additional n-acid and ndiacid components. This high stability is attributed to interactions between these components, rather than the exceptional stability of any one molecular component. We propose a biomimetic solution for the creation of polymer materials that can withstand high pressures for a multitude of uses in aeronautics, vascular autografts, ballistics and light-weight protective materials
Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases
Complex hierarchical structure governs emergent properties in biopolymeric materials; yet, the material processing involved remains poorly understood. Here, we investigated the multi-scale structure and composition of the mussel byssus cuticle before, during and after formation to gain insight into the processing of this hard, yet extensible metal cross-linked protein composite. Our findings reveal that the granular substructure crucial to the cuticle’s function as a wear-resistant coating of an extensible polymer fiber is pre-organized in condensed liquid phase secretory vesicles. These are phase-separated into DOPA-rich proto-granules enveloped in a sulfur-rich proto-matrix which fuses during secretion, forming the sub-structure of the cuticle. Metal ions are added subsequently in a site-specific way, with iron contained in the sulfur-rich matrix and vanadium coordinated by DOPA-catechol in the granule. We posit that this hierarchical structure self-organizes via phase separation of specific amphiphilic proteins within secretory vesicles, resulting in a meso-scale structuring that governs cuticle function
Influence of sacrificial bonds on the mechanical behaviour of polymer chains
 A growing focus in modern materials science is the attempt to transfer principles found in nature into new technological concepts with the goal of producing novel materials with tailored mechanical properties. One of these principles used in nature is the concept of sacrificial bonding (i.e. non-covalent cross-links that rupture prior to the protein backbone), which is associated with increased toughness in many biological materials. In the present work, the influence of the number and distribution of sacrificial bonds (SBs) on three main mechanical parameters—strength, work to fracture and apparent stiffness—is investigated in a simple model system using computer simulations. The results show that the work to fracture is mainly determined by the number of SBs present in the system, while the apparent stiffness and, to a lesser extent, the strength is altered when the distribution of SBs is changed. </jats:p
Elasticity and metastability limit in supercooled liquids: a lattice model
We present Monte Carlo simulations on a lattice system that displays a first
order phase transition between a disordered phase (liquid) and an ordered phase
(crystal). The model is augmented by an interaction that simulates the effect
of elasticity in continuum models. The temperature range of stability of the
liquid phase is strongly increased in the presence of the elastic interaction.
We discuss the consequences of this result for the existence of a kinetic
spinodal in real systems.Comment: 8 pages, 5 figure
- …
