8,454 research outputs found

    X-ray iron-line emission from the SN 185 remnant

    Get PDF
    Radio and optical research was carried out in order to show that the supernova remnant RCW86 is a remnant of the earliest supernova event ever recorded in history (185 AD). The results are as follows: (1) an iron-line emission was found at 6.7 keV; (2) the temperature measured from HEAO-1 was approximately 6 keV; and (3) the equivalent width was consistent within the uncertainties with a cosmic iron abundance. These results support the identification of the supernova remnant RCW86 (it's X-ray source) with the historic supernova event

    X-Ray Emitting Ejecta of Supernova Remnant N132D

    Full text link
    The brightest supernova remnant in the Magellanic Clouds, N132D, belongs to the rare class of oxygen-rich remnants, about a dozen objects that show optical emission from pure heavy-element ejecta. They originate in explosions of massive stars that produce large amounts of O, although only a tiny fraction of that O is found to emit at optical wavelengths. We report the detection of substantial amounts of O at X-ray wavelengths in a recent 100 ks Chandra ACIS observation of N132D. A comparison between subarcsecond-resolution Chandra and Hubble images reveals a good match between clumpy X-ray and optically emitting ejecta on large (but not small) scales. Ejecta spectra are dominated by strong lines of He- and H-like O; they exhibit substantial spatial variations partially caused by patchy absorption within the LMC. Because optical ejecta are concentrated in a 5 pc radius elliptical expanding shell, the detected ejecta X-ray emission also originates in this shell.Comment: 5 pages, 6 figures, ApJ Letters, in pres

    Identification and Analysis of Young Star Cluster Candidates in M31

    Get PDF
    We present a method for finding clusters of young stars in M31 using broadband WFPC2 data from the HST data archive. Applying our identification method to 13 WFPC2 fields, covering an area of ~60 arcmin^2, has revealed 79 new candidate young star clusters in these portions of the M31 disk. Most of these clusters are small (~<5 pc) young (~10-200 Myr) star groups located within large OB associations. We have estimated the reddening values and the ages of each candidate individually by fitting isochrones to the stellar photometry. We provide a catalog of the candidates including rough approximations of their reddenings and ages. We also look for patterns of cluster formation with galactocentric distance, but our rough estimates are not precise enough to reveal any clear patterns.Comment: 32 pages, 9 figures, 5 tables, accepted to Ap

    Direct Measurement of Neutron-Star Recoil in the Oxygen-Rich Supernova Remnant Puppis A

    Get PDF
    A sequence of three Chandra X-ray Observatory High Resolution Camera images taken over a span of five years reveals arc-second-scale displacement of RX J0822-4300, the stellar remnant (presumably a neutron star) near the center of the Puppis A supernova remnant. We measure its proper motion to be 0.165+/-0.025 arcsec/yr toward the west-southwest. At a distance of 2 kpc, this corresponds to a transverse space velocity of ~1600 km/s. The space velocity is consistent with the explosion center inferred from proper motions of the oxygen-rich optical filaments, and confirms the idea that Puppis A resulted from an asymmetric explosion accompanied by a kick that imparted roughly 3*10^49 ergs of kinetic energy (some 3 percent of the kinetic energy for a typical supernova) to the stellar remnant. We discuss constraints on core-collapse supernova models that have been proposed to explain neutron star kick velocities

    Band structure and magnetotransport of a two-dimensional electron gas in the presence of spin-orbit interaction

    Full text link
    The band structure and magnetotransport of a two-dimensional electron gas (2DEG), in the presence of the Rashba (RSOI) and Dresselhaus (DSOI) terms of the spin-orbit interaction and of a perpendicular magnetic field, is investigated. Exact and approximate analytical expressions for the band structure are obtained and used to calculate the density of states (DOS) and the longitudinal magnetoresitivity assuming a Gaussian type of level broadening. The interplay between the Zeeman coupling and the two terms of the SOI is discussed. If the strengths α\alpha and β \beta, of the RSOI and DSOI, respectively, are equal and the gg factor vanishes, the two spin states are degenerate and a shifted Landau-level structure appears. With the increase of the difference α−β\alpha- \beta, a novel beating pattern of the DOS and of the Shubnikov-de Haas (SdH) oscillations appears distinctly different from that occurring when one of these strengths vanishes

    Coherent optical transfer of Feshbach molecules to a lower vibrational state

    Full text link
    Using the technique of stimulated Raman adiabatic passage (STIRAP) we have coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply bound vibrational quantum level. Our measurements indicate a high transfer efficiency of up to 87%. As the molecules are held in an optical lattice with not more than a single molecule per lattice site, inelastic collisions between the molecules are suppressed and we observe long molecular lifetimes of about 1 s. Using STIRAP we have created quantum superpositions of the two molecular states and tested their coherence interferometrically. These results represent an important step towards Bose-Einstein condensation (BEC) of molecules in the vibrational ground state.Comment: 4 pages, 5 figure

    Helical edge states in multiple topological mass domains

    Get PDF
    The two-dimensional topological insulating phase has been experimentally discovered in HgTe quantum wells (QWs). The low-energy physics of two-dimensional topological insulators (TIs) is described by the Bernevig-Hughes-Zhang (BHZ) model, where the realization of a topological or a normal insulating phase depends on the Dirac mass being negative or positive, respectively. We solve the BHZ model for a mass domain configuration, analyzing the effects on the edge modes of a finite Dirac mass in the normal insulating region (soft-wall boundary condition). We show that at a boundary between a TI and a normal insulator (NI), the Dirac point of the edge states appearing at the interface strongly depends on the ratio between the Dirac masses in the two regions. We also consider the case of multiple boundaries such as NI/TI/NI, TI/NI/TI and NI/TI/NI/TI.Comment: 11 pages, 15 figure

    Helical edge states in multiple topological mass domains

    Get PDF
    The two-dimensional topological insulating phase has been experimentally discovered in HgTe quantum wells (QWs). The low-energy physics of two-dimensional topological insulators (TIs) is described by the Bernevig-Hughes-Zhang (BHZ) model, where the realization of a topological or a normal insulating phase depends on the Dirac mass being negative or positive, respectively. We solve the BHZ model for a mass domain configuration, analyzing the effects on the edge modes of a finite Dirac mass in the normal insulating region (soft-wall boundary condition). We show that at a boundary between a TI and a normal insulator (NI), the Dirac point of the edge states appearing at the interface strongly depends on the ratio between the Dirac masses in the two regions. We also consider the case of multiple boundaries such as NI/TI/NI, TI/NI/TI and NI/TI/NI/TI.Comment: 11 pages, 15 figure
    • …
    corecore