83,214 research outputs found

    Consequences of 't Hooft's Equivalence Class Theory and Symmetry by Large Coarse Graining

    Full text link
    According to 't Hooft (Class.Quantum.Grav. 16 (1999), 3263), quantum gravity can be postulated as a dissipative deterministic system, where quantum states at the ``atomic scale''can be understood as equivalence classes of primordial states governed by a dissipative deterministic dynamics law at the ``Planck scale''. In this paper, it is shown that for a quantum system to have an underlying deterministic dissipative dynamics, the time variable should be discrete if the continuity of its temporal evolution is required. Besides, the underlying deterministic theory also imposes restrictions on the energy spectrum of the quantum system. It is also found that quantum symmetry at the ``atomic scale'' can be induced from 't Hooft's Coarse Graining classification of primordial states at the "Planck scale".Comment: 12 papge, Late

    Unchanged thermopower enhancement at the semiconductor-metal transition in correlated FeSb2−x_{2-x}Tex_x

    Full text link
    Substitution of Sb in FeSb2_2 by less than 0.5% of Te induces a transition from a correlated semiconductor to an unconventional metal with large effective charge carrier mass m∗m^*. Spanning the entire range of the semiconductor-metal crossover, we observed an almost constant enhancement of the measured thermopower compared to that estimated by the classical theory of electron diffusion. Using the latter for a quantitative description one has to employ an enhancement factor of 10-30. Our observations point to the importance of electron-electron correlations in the thermal transport of FeSb2_2, and suggest a route to design thermoelectric materials for cryogenic applications.Comment: 3 pages, 3 figures, accepted for publication in Appl. Phys. Lett. (2011

    Quantum Thermalization With Couplings

    Full text link
    We study the role of the system-bath coupling for the generalized canonical thermalization [S. Popescu, et al., Nature Physics 2,754(2006) and S. Goldstein et al., Phys. Rev. Lett. 96, 050403(2006)] that reduces almost all the pure states of the "universe" [formed by a system S plus its surrounding heat bath BB] to a canonical equilibrium state of S. We present an exactly solvable, but universal model for this kinematic thermalization with an explicit consideration about the energy shell deformation due to the interaction between S and B. By calculating the state numbers of the "universe" and its subsystems S and B in various deformed energy shells, it is found that, for the overwhelming majority of the "universe" states (they are entangled at least), the diagonal canonical typicality remains robust with respect to finite interactions between S and B. Particularly, the kinematic decoherence is utilized here to account for the vanishing of the off-diagonal elements of the reduced density matrix of S. It is pointed out that the non-vanishing off-diagonal elements due to the finiteness of bath and the stronger system-bath interaction might offer more novelties of the quantum thermalization.Comment: 4 pages, 2 figure

    High-Order Adiabatic Approximation for Non-Hermitian Quantum System and Complexization of Berry's Phase

    Full text link
    In this paper the evolution of a quantum system drived by a non-Hermitian Hamiltonian depending on slowly-changing parameters is studied by building an universal high-order adiabatic approximation(HOAA) method with Berry's phase ,which is valid for either the Hermitian or the non-Hermitian cases. This method can be regarded as a non-trivial generalization of the HOAA method for closed quantum system presented by this author before. In a general situation, the probabilities of adiabatic decay and non-adiabatic transitions are explicitly obtained for the evolution of the non-Hermitian quantum system. It is also shown that the non-Hermitian analog of the Berry's phase factor for the non-Hermitian case just enjoys the holonomy structure of the dual linear bundle over the parameter manifold. The non-Hermitian evolution of the generalized forced harmonic oscillator is discussed as an illustrative examples.Comment: ITP.SB-93-22,17 page

    The overmassive black hole in NGC 1277: new constraints from molecular gas kinematics

    Full text link
    We report the detection of CO(1-0) emission from NGC 1277, a lenticular galaxy in the Perseus Cluster. NGC 1277 has previously been proposed to host an overmassive black hole (BH) compared to the galaxy bulge luminosity (mass), based on stellar-kinematic measurements. The CO(1-0) emission, observed with the IRAM Plateau de Bure Interferometer (PdBI) using both, a more compact (2.9-arcsec resolution) and a more extended (1-arcsec resolution) configuration, is likely to originate from the dust lane encompassing the galaxy nucleus at a distance of 0.9 arcsec (~320 pc). The double-horned CO(1-0) profile found at 2.9-arcsec resolution traces 1.5×108 M⊙1.5\times 10^8\ M_\odot of molecular gas, likely orbiting in the dust lane at $\sim 550\ \mathrm{km\ s^{-1}},whichsuggestsatotalenclosedmassof, which suggests a total enclosed mass of \sim 2\times 10^{10}\ M_\odot.At1−arcsecresolution,theCO(1−0)emissionappearsspatiallyresolvedalongthedustlaneineast−westdirection,thoughatalowsignal−to−noiseratio.Inagreementwiththepreviousstellar−kinematicmeasurements,theCO(1−0)kinematicsisfoundtobeconsistentwithan. At 1-arcsec resolution, the CO(1-0) emission appears spatially resolved along the dust lane in east-west direction, though at a low signal-to-noise ratio. In agreement with the previous stellar-kinematic measurements, the CO(1-0) kinematics is found to be consistent with an \sim 1.7\times 10^{10}\ M_\odotBHforastellarmass−to−lightratioof BH for a stellar mass-to-light ratio of M/L_V=6.3,whilealessmassiveBHof, while a less massive BH of \sim 5\times 10^{9}\ M_\odotispossiblewhenassumingalarger is possible when assuming a larger M/L_V=10$. While the molecular gas reservoir may be associated with a low level of star formation activity, the extended 2.6-mm continuum emission is likely to originate from a weak AGN, possibly characterized by an inverted radio-to-millimetre spectral energy distribution. Literature radio and X-ray data indicate that the BH in NGC 1277 is also overmassive with respect to the Fundamental Plane of BH activity.Comment: 15 pages, 13 figures; accepted for publication in MNRAS on 20 January 2016; updated version including minor changes and note added in proo
    • …
    corecore