11,876 research outputs found

    On the Hierarchical Preconditioning of the PMCHWT Integral Equation on Simply and Multiply Connected Geometries

    Full text link
    We present a hierarchical basis preconditioning strategy for the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral equation considering both simply and multiply connected geometries.To this end, we first consider the direct application of hierarchical basis preconditioners, developed for the Electric Field Integral Equation (EFIE), to the PMCHWT. It is notably found that, whereas for the EFIE a diagonal preconditioner can be used for obtaining the hierarchical basis scaling factors, this strategy is catastrophic in the case of the PMCHWT since it leads to a severly ill-conditioned PMCHWT system in the case of multiply connected geometries. We then proceed to a theoretical analysis of the effect of hierarchical bases on the PMCHWT operator for which we obtain the correct scaling factors and a provably effective preconditioner for both low frequencies and mesh refinements. Numerical results will corroborate the theory and show the effectiveness of our approach

    Efficient solvability of Hamiltonians and limits on the power of some quantum computational models

    Full text link
    We consider quantum computational models defined via a Lie-algebraic theory. In these models, specified initial states are acted on by Lie-algebraic quantum gates and the expectation values of Lie algebra elements are measured at the end. We show that these models can be efficiently simulated on a classical computer in time polynomial in the dimension of the algebra, regardless of the dimension of the Hilbert space where the algebra acts. Similar results hold for the computation of the expectation value of operators implemented by a gate-sequence. We introduce a Lie-algebraic notion of generalized mean-field Hamiltonians and show that they are efficiently ("exactly") solvable by means of a Jacobi-like diagonalization method. Our results generalize earlier ones on fermionic linear optics computation and provide insight into the source of the power of the conventional model of quantum computation.Comment: 6 pages; no figure

    Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs

    Full text link
    We present results of 6 years of observations, reduced and analyzed with the same tools in a systematic way. We report completely new data for 15 objects, for 5 objects we present a new analysis of previously published results plus additional data and for 9 objects we present a new analysis of data already published. Lightcurves, possible rotation periods and photometric amplitudes are reported for all of them. The photometric variability is smaller than previously thought: the mean amplitude of our sample is 0.1mag and only around 15% of our sample has a larger variability than 0.15mag. The smaller variability than previously thought seems to be a bias of previous observations. We find a very weak trend of faster spinning objects towards smaller sizes, which appears to be consistent with the fact that the smaller objects are more collisionally evolved, but could also be a specific feature of the Centaurs, the smallest objects in our sample. We also find that the smaller the objects, the larger their amplitude, which is also consistent with the idea that small objects are more collisionally evolved and thus more deformed. Average rotation rates from our work are 7.5h for the whole sample, 7.6h for the TNOs alone and 7.3h for the Centaurs. All of them appear to be somewhat faster than what one can derive from a compilation of the scientific literature and our own results. Maxwellian fits to the rotation rate distribution give mean values of 7.5h (for the whole sample) and 7.3h (for the TNOs only). Assuming hydrostatic equilibrium we can determine densities from our sample under the additional assumption that the lightcurves are dominated by shape effects, which is likely not realistic. The resulting average density is 0.92g/cm^3 which is not far from the density constraint that one can derive from the apparent spin barrier that we observe.Comment: Accepted for publication in A&
    • …
    corecore