9,459 research outputs found

    Normal-Superfluid Interface Scattering For Polarized Fermion Gases

    Full text link
    We argue that, for the recent experiments with imbalanced fermion gases, a temperature difference may occur between the normal (N) and the gapped superfluid (SF) phase. Using the mean-field formalism, we study particle scattering off the N-SF interface from the deep BCS to the unitary regime. We show that the thermal conductivity across the interface drops exponentially fast with increasing h/kBTh/k_B T, where hh is the chemical potential imbalance. This implies a blocking of thermal equilibration between the N and the SF phase. We also provide a possible mechanism for the creation of gap oscillations (FFLO-like states) as seen in recent studies on these systems.Comment: 4 pages, 3 figure

    Josephson Currents in Quantum Hall Devices

    Full text link
    We consider a simple model for an SNS Josephson junction in which the "normal metal" is a section of a filling-factor ν=2\nu=2 integer quantum-Hall edge. We provide analytic expressions for the current/phase relations to all orders in the coupling between the superconductor and the quantum Hall edge modes, and for all temperatures. Our conclusions are consistent with the earlier perturbative study by Ma and Zyuzin [Europhysics Letters {\bf 21} 941-945 (1993)]: The Josephson current is independent of the distance between the superconducting leads, and the upper bound on the maximum Josephson current is inversely proportional to the perimeter of the Hall device.Comment: Revtex4. 22 pages 9 figures. Replaced version has minor typos fixed and one added referenc

    Quasi two-dimensional superfluid Fermi gases

    Full text link
    We study a quasi two-dimensional superfluid Fermi gas where the confinement in the third direction is due to a strong harmonic trapping. We investigate the behavior of such a system when the chemical potential is varied and find strong modifications of the superfluid properties due to the discrete harmonic oscillator states. We show that such quasi two-dimensional behavior can be created and observed with current experimental capabilities.Comment: In response to referee comments, minor changes from the earlier versio

    Current-phase relation of the SNS junction in a superconducting loop

    Full text link
    We study the current-phase relation of the superconductor/normal/superconductor (SNS) junction imbedded in a superconducting loop. Considering the current conservation and free energy minimum conditions, we obtain the persistent currents of the normal/superconductor (NS) loop. At finite temperature we can explain the experimentally observed highly non-sinusoidal currents which have maxima near the zero external flux.Comment: 7 pages, 3 figures, version to appear in Europhys. Let

    Absorption of heat into a superconductor-normal metal-superconductor junction from a fluctuating environment

    Full text link
    We study a diffusive superconductor-normal metal-superconductor junction in an environment with intrinsic incoherent fluctuations which couple to the junction through an electromagnetic field. When the temperature of the junction differs from that of the environment, this coupling leads to an energy transfer between the two systems, taking the junction out of equilibrium. We describe this effect in the linear response regime and show that the change in the supercurrent induced by this coupling leads to qualitative changes in the current-phase relation and for a certain range of parameters, an increase in the critical current of the junction. Besides normal metals, similar effects can be expected also in other conducting weak links.Comment: 5 pages, 4 figures - supplementary information included: 3 pages, 1 figure; minor modifications to the text and Fig. 2, added Ref. 1

    Superconductor-semiconductor magnetic microswitch

    Full text link
    A hybrid superconductor--two-dimensional electron gas microdevice is presented. Its working principle is based on the suppression of Andreev reflection at the superconductor-semiconductor interface caused by a magnetic barrier generated by a ferromagnetic strip placed on top of the structure. Device switching is predicted with fields up to some mT and working frequencies of several GHz, making it promising for applications ranging from microswitches and storage cells to magnetic field discriminators.Comment: 4 pages, 3 figures, minor changes to tex

    Re-entrant localization of single particle transport in disordered Andreev wires

    Full text link
    We study effects of disorder on the low energy single particle transport in a normal wire surrounded by a superconductor. We show that the heat conductance includes the Andreev diffusion decreasing with increase in the mean free path â„“\ell and the diffusive drift produced by a small particle-hole asymmetry, which increases with increasing â„“\ell. The conductance thus has a minimum as a function of â„“\ell which leads to a peculiar re-entrant localization as a function of the mean free path.Comment: 4 pages, 2 figure

    Simple theory of extremely overdoped HTS

    Full text link
    We demonstrate the existence of a simple physical picture of superconductivity for extremely overdoped CuO2 planes. It possesses all characteristic features of HTS, such as a high superconducting transition temperature, the dx2−y2d_{x^2 - y^2} symmetry of order parameter, and the coexistence of a single electron Fermi surface and a pseudogap in the normal state. Values of pseudogap are calculated for different doping levels. An orbital paramagnetism of preformed pairs is predicted.Comment: 7 pages, 1 figur

    Tunneling into d-wave superconductors: Effects of interface spin-orbit coupling

    Full text link
    Tunneling conductance of a clean normal metal/d-wave superconductor junction is studied by using the extended Blonder-Tinkham-Klapwijk formalism. We show that the conductance is significantly affected by the interface spin-orbit coupling of the Rashba type, which is inevitably present due to the asymmetry of the junction.Comment: 4 pages, 4 figure

    Normal metal - superconductor tunnel junction as a Brownian refrigerator

    Get PDF
    Thermal noise generated by a hot resistor (resistance RR) can, under proper conditions, catalyze heat removal from a cold normal metal (N) in contact with a superconductor (S) via a tunnel barrier. Such a NIS junction acts as Maxwell's demon, rectifying the heat flow. Upon reversal of the temperature gradient between the resistor and the junction the heat fluxes are reversed: this presents a regime which is not accessible in an ordinary voltage-biased NIS structure. We obtain analytical results for the cooling performance in an idealized high impedance environment, and perform numerical calculations for general RR. We conclude by assessing the experimental feasibility of the proposed effect
    • …
    corecore