9,459 research outputs found
Normal-Superfluid Interface Scattering For Polarized Fermion Gases
We argue that, for the recent experiments with imbalanced fermion gases, a
temperature difference may occur between the normal (N) and the gapped
superfluid (SF) phase. Using the mean-field formalism, we study particle
scattering off the N-SF interface from the deep BCS to the unitary regime. We
show that the thermal conductivity across the interface drops exponentially
fast with increasing , where is the chemical potential imbalance.
This implies a blocking of thermal equilibration between the N and the SF
phase. We also provide a possible mechanism for the creation of gap
oscillations (FFLO-like states) as seen in recent studies on these systems.Comment: 4 pages, 3 figure
Josephson Currents in Quantum Hall Devices
We consider a simple model for an SNS Josephson junction in which the "normal
metal" is a section of a filling-factor integer quantum-Hall edge. We
provide analytic expressions for the current/phase relations to all orders in
the coupling between the superconductor and the quantum Hall edge modes, and
for all temperatures. Our conclusions are consistent with the earlier
perturbative study by Ma and Zyuzin [Europhysics Letters {\bf 21} 941-945
(1993)]: The Josephson current is independent of the distance between the
superconducting leads, and the upper bound on the maximum Josephson current is
inversely proportional to the perimeter of the Hall device.Comment: Revtex4. 22 pages 9 figures. Replaced version has minor typos fixed
and one added referenc
Quasi two-dimensional superfluid Fermi gases
We study a quasi two-dimensional superfluid Fermi gas where the confinement
in the third direction is due to a strong harmonic trapping. We investigate the
behavior of such a system when the chemical potential is varied and find strong
modifications of the superfluid properties due to the discrete harmonic
oscillator states. We show that such quasi two-dimensional behavior can be
created and observed with current experimental capabilities.Comment: In response to referee comments, minor changes from the earlier
versio
Current-phase relation of the SNS junction in a superconducting loop
We study the current-phase relation of the
superconductor/normal/superconductor (SNS) junction imbedded in a
superconducting loop. Considering the current conservation and free energy
minimum conditions, we obtain the persistent currents of the
normal/superconductor (NS) loop. At finite temperature we can explain the
experimentally observed highly non-sinusoidal currents which have maxima near
the zero external flux.Comment: 7 pages, 3 figures, version to appear in Europhys. Let
Absorption of heat into a superconductor-normal metal-superconductor junction from a fluctuating environment
We study a diffusive superconductor-normal metal-superconductor junction in
an environment with intrinsic incoherent fluctuations which couple to the
junction through an electromagnetic field. When the temperature of the junction
differs from that of the environment, this coupling leads to an energy transfer
between the two systems, taking the junction out of equilibrium. We describe
this effect in the linear response regime and show that the change in the
supercurrent induced by this coupling leads to qualitative changes in the
current-phase relation and for a certain range of parameters, an increase in
the critical current of the junction. Besides normal metals, similar effects
can be expected also in other conducting weak links.Comment: 5 pages, 4 figures - supplementary information included: 3 pages, 1
figure; minor modifications to the text and Fig. 2, added Ref. 1
Superconductor-semiconductor magnetic microswitch
A hybrid superconductor--two-dimensional electron gas microdevice is
presented. Its working principle is based on the suppression of Andreev
reflection at the superconductor-semiconductor interface caused by a magnetic
barrier generated by a ferromagnetic strip placed on top of the structure.
Device switching is predicted with fields up to some mT and working frequencies
of several GHz, making it promising for applications ranging from microswitches
and storage cells to magnetic field discriminators.Comment: 4 pages, 3 figures, minor changes to tex
Re-entrant localization of single particle transport in disordered Andreev wires
We study effects of disorder on the low energy single particle transport in a
normal wire surrounded by a superconductor. We show that the heat conductance
includes the Andreev diffusion decreasing with increase in the mean free path
and the diffusive drift produced by a small particle-hole asymmetry,
which increases with increasing . The conductance thus has a minimum as a
function of which leads to a peculiar re-entrant localization as a
function of the mean free path.Comment: 4 pages, 2 figure
Simple theory of extremely overdoped HTS
We demonstrate the existence of a simple physical picture of
superconductivity for extremely overdoped CuO2 planes. It possesses all
characteristic features of HTS, such as a high superconducting transition
temperature, the symmetry of order parameter, and the
coexistence of a single electron Fermi surface and a pseudogap in the normal
state. Values of pseudogap are calculated for different doping levels. An
orbital paramagnetism of preformed pairs is predicted.Comment: 7 pages, 1 figur
Tunneling into d-wave superconductors: Effects of interface spin-orbit coupling
Tunneling conductance of a clean normal metal/d-wave superconductor junction
is studied by using the extended Blonder-Tinkham-Klapwijk formalism. We show
that the conductance is significantly affected by the interface spin-orbit
coupling of the Rashba type, which is inevitably present due to the asymmetry
of the junction.Comment: 4 pages, 4 figure
Normal metal - superconductor tunnel junction as a Brownian refrigerator
Thermal noise generated by a hot resistor (resistance ) can, under proper
conditions, catalyze heat removal from a cold normal metal (N) in contact with
a superconductor (S) via a tunnel barrier. Such a NIS junction acts as
Maxwell's demon, rectifying the heat flow. Upon reversal of the temperature
gradient between the resistor and the junction the heat fluxes are reversed:
this presents a regime which is not accessible in an ordinary voltage-biased
NIS structure. We obtain analytical results for the cooling performance in an
idealized high impedance environment, and perform numerical calculations for
general . We conclude by assessing the experimental feasibility of the
proposed effect
- …