1,042 research outputs found
Apparent absence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) in frogs in Malaita Province, Solomon Islands
A major driver of global biodiversity loss is disease. One of the most devastating wildlife diseases known is chytridiomycosis, which is caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis, and is implicated in population declines in over 500 frog species. Thought to originate in Asia, B. dendrobatidis now has a global distribution, likely due to human movement and trade. The pathogen has yet to be detected in Melanesia, but there have been few surveys for B. dendrobatidis in the region, and none in the Solomon Islands archipelago, a biogeographic region with a unique and culturally important frog fauna. We swabbed 200 frogs of eight species in three genera in lowland and highland sites in East Kwaio on the island of Malaita in the Solomon Islands. All frogs tested negative for the pathogen but it is possible that the pathogen is present despite non-detection, so further surveys for the pathogen are needed throughout the country. Despite this, it is safest to take a precautionary approach and assume that B. dendrobatidis has not yet been introduced to the Solomon Islands, and that naïve native amphibian populations may be at risk of decline if the pathogen is introduced. Protocols are needed to prevent the accidental import of infected frogs via tourism or in logging or mining equipment. Monitoring of frog populations near areas of high risk such as ports is also recommended. The frogs of the Solomon Islands archipelago are biologically unique and culturally significant, and protecting them from the potentially devastating impacts of B. dendrobatidis is vital
Insulin, Ascorbate, and Glucose Have a Much Greater Influence Than Transferrin and Selenous Acid on the In Vitro Growth of Engineered Cartilage in Chondrogenic Media
The primary goal of this study was to characterize the response of chondrocyte-seeded agarose constructs to varying concentrations of several key nutrients in a chondrogenic medium, within the overall context of optimizing the key nutrients and the placement of nutrient channels for successful growth of cartilage tissue constructs large enough to be clinically relevant in the treatment of osteoarthritis (OA). To this end, chondrocyte-agarose constructs (phi4x2.34 mm, 30x106 cells/mL) were subjected to varying supplementation levels of insulin (0× to 30× relative to standard supplementation), transferrin (0x to 30x), selenous acid (0x to 10x), ascorbate (0x to 30x), and glucose (0x to 3x). The quality of resulting engineered tissue constructs was evaluated by their compressive modulus (E-Y), tensile modulus (E+Y), hydraulic permeability (k), and content of sulfated glycosaminoglycans (sGAG) and collagen (COL); DNA content was also quantified. Three control groups from two separate castings of constructs (1x concentrations of all medium constituents) were used. After 42 days of culture, values in each of these controls were, respectively, E-Y=518 plus or minus 78, 401 plus or minus 113, 236 plus or minus 67 kPa; E+Y=1420 plus or minus 430, 1140 plus or minus 490, 1240 plus or minus 280 kPa; k=2.3 plus or minus 0.8x10-3, 5.4 plus or minus 7.0x10-3, 3.3 plus or minus 1.3x10-3 mm4/N times s; sGAG=7.8 plus or minus 0.3, 6.3 plus or minus 0.4, 4.1 plus or minus 0.5%/ww; COL=1.3 plus or minus 0.2, 1.1 plus or minus 0.3, 1.4 plus or minus 0.4%/ww; and DNA=11.5 plus or minus 2.2, 12.1 plus or minus 0.6, 5.2 plus or minus 2.8 μg/disk. The presence of insulin and ascorbate was essential, but their concentrations may drop as low as 0.3x without detrimental effects on any of the measured properties; excessive supplementation of ascorbate (up to 30x) was detrimental to E-Y, and 30x insulin was detrimental to both E+Y and E-Y. The presence of glucose was similarly essential, and matrix elaboration was significantly dependent on its concentration (p less than 10-6), with loss of functional properties, composition, and cellularity observed at less than or equal to 0.3x; excessive glucose supplementation (up to 3x) showed no detrimental effects. In contrast, transferrin and selenous acid had no influence on matrix elaboration. These findings suggest that adequate distributions of insulin, ascorbate, and glucose, but not necessarily of transferrin and selenous acid, must be ensured within large engineered cartilage constructs to produce a viable substitute for joint tissue lost due to OA
Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city
The Arctic has rapidly urbanized in recent decades with 2 million people
currently living in more than a hundred cities north of 65∘ N. These
cities have a harsh but sensitive climate and warming here is the principle
driver of destructive thawing, water leakages, air pollution and other
detrimental environmental impacts. This study reports on the urban
temperature anomaly in a typical Arctic city. This persistent warm anomaly
reaches up to 11 K in winter with the wintertime mean urban temperature
being 1.9 K higher on average in the city center than in the surrounding
natural landscape. An urban temperature anomaly, also known as an urban heat
island (UHI), was found using remote sensing and in situ temperature data.
High-resolution (1 km) model experiments run with and without an urban
surface parameterization helped to identify the leading physical and
geographical factors supporting a strong temperature anomaly in a cold
climate. The statistical analysis and modeling suggest that at least
50 % of this warm anomaly is caused by the UHI effect, driven mostly by
direct anthropogenic heating, while the rest is created by natural
microclimatic variability over the undulating relief of the area. The current
UHI effect can be as large as the projected, and already amplified, warming
for the region in the 21st century. In contrast to earlier reports, this
study found that the wintertime UHI in the Arctic should be largely
attributed to direct anthropogenic heating. This is a strong argument in
support of energy efficiency measures, urban climate change mitigation
policy and against high-density urban development in polar settlements. The
complex pattern of thermal conditions, as revealed in this study, challenges
urban planners to account for the observed microclimatic diversity in
perspective sustainable development solutions.</p
MicroRNAs Induced During Adipogenesis that Accelerate Fat Cell Development Are Downregulated in Obesity
OBJECTIVE-- We investigated the regulation and involvement of microRNAs (miRNAs) in fat cell development and obesity. RESEARCH DESIGN AND METHODS- Using miRNA microarrays, we profiled the expression of >370 miRNAs during adipogenesis of preadipocyte 3T3-L1 cells and adipocytes from leptin deficient ob/ob and diet-induced obese mice. Changes in key miRNAs were validated by RT-PCR. We further assessed the contribution of the chronic inflammatory environment in obese adipose tissue to the dysregulated miRNA expression by tumor necrosis factor (TNF)-α treatment of adipocytes. We functionally characterized two adipocyte-enriched miRNAs, miR-103 and miR-143, by a gain-of-function approach. RESULTS--Similar miRNAs were differentially regulated during in vitro and in vivo adipogenesis. Importantly, miRNAs that were induced during adipogenesis were downregulated in adipocytes from both types of obese mice and vice versa. These changes are likely associated with the chronic inflammatory environment, since they were mimicked by TNF-α treatment of differentiated adipocytes. Ectopic expression of miR-103 or miR-143 in preadipocytes accelerated adipogenesis, as measured both by the upregulation of many adipogenesis markers and by an increase in triglyceride accumulation at an early stage of adipogenesis. CONCLUSIONS- Our results provide the first experimental evidence for miR-103 function in adipose biology. The remarkable inverse regulatory pattern for many miRNAs during adipogenesis and obesity has important implications for understanding adipose tissue dysfunction in obese mice and humans and the link between chronic inflammation and obesity with insulin resistance
miR-375 Targets 3′-Phosphoinositide–Dependent Protein Kinase-1 and Regulates Glucose-Induced Biological Responses in Pancreatic β-Cells
OBJECTIVE—MicroRNAs are short, noncoding RNAs that regulate gene expression. We hypothesized that the phosphatidylinositol 3-kinase (PI 3-kinase) cascade known to be important in β-cell physiology could be regulated by microRNAs. Here, we focused on the pancreas-specific miR-375 as a potential regulator of its predicted target 3′-phosphoinositide–dependent protein kinase-1 (PDK1), and we analyzed its implication in the response of insulin-producing cells to elevation of glucose levels
Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity
<p>Abstract</p> <p>Background</p> <p>Adipose tissue abundance relies partly on the factors that regulate adipogenesis, i.e. proliferation and differentiation of adipocytes. While components of the transcriptional program that initiates adipogenesis is well-known, the importance of microRNAs in adipogenesis is less well studied. We thus set out to investigate whether miRNAs would be actively modulated during adipogenesis and obesity.</p> <p>Methods</p> <p>Several models exist to study adipogenesis <it>in vitro</it>, of which the cell line 3T3-L1 is the most well known, albeit not the most physiologically appropriate. Thus, as an alternative, we produced EXIQON microarray of brown and white <it>primary </it>murine adipocytes (prior to and following differentiation) to yield global profiles of miRNAs.</p> <p>Results</p> <p>We found 65 miRNAs regulated during <it>in vitro </it>adipogenesis in primary adipocytes. We evaluated the similarity of our responses to those found in non-primary cell models, through literature data-mining. When comparing primary adipocyte profiles, with those of cell lines reported in the literature, we found a high degree of difference in 'adipogenesis' regulated miRNAs suggesting that the model systems may not be accurately representing adipogenesis. The expression of 10 adipogenesis-regulated miRNAs were studied using real-time qPCR and then we selected 5 miRNAs, that showed robust expression, were profiled in subcutaneous adipose tissue obtained from 20 humans with a range of body mass indices (BMI, range = 21-48, and all samples have U133+2 Affymetrix profiles provided). Of the miRNAs tested, mir-21 was robustly expressed in human adipose tissue and positively correlated with BMI (R2 = 0.49, p < 0.001).</p> <p>Conclusion</p> <p>In conclusion, we provide a preliminary analysis of miRNAs associated with primary cell <it>in vitro </it>adipogenesis and demonstrate that the inflammation-associated miRNA, mir-21 is up-regulated in subcutaneous adipose tissue in human obesity. Further, we provide a novel transcriptomics database of EXIQON and Affymetrix adipocyte profiles to facilitate data mining.</p
Recommended from our members
MEGAPOLI: concept of multi-scale modelling of megacity impact on air quality and climate
The EU FP7 Project MEGAPOLI: "Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation" (http://megapoli.info) brings together leading European research groups, state-of-the-art scientific tools and key players from non-European countries to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The suggested concept of multi-scale integrated modelling of megacity impact on air quality and climate and vice versa is discussed in the paper. It requires considering different spatial and temporal dimensions: time scales from seconds and hours (to understand the interaction mechanisms) up to years and decades (to consider the climate effects); spatial resolutions: with model down- and up-scaling from street- to global-scale; and two-way interactions between meteorological and chemical processes
MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer
Background:MicroRNAs (miRNAs) are 19-25-nucleotides regulatory non-protein-coding RNA molecules that regulate the expressions of a wide variety of genes, including some involved in cancer development. In this study, we investigated the possible role of miR-143 in colorectal cancer (CRC).Methods:Expression levels of human mature miRNAs were examined using real-time PCR-based expression arrays on paired colorectal carcinomas and adjacent non-cancerous colonic tissues. The downregulation of miR-143 was further evaluated in colon cancer cell lines and in paired CRC and adjacent non-cancerous colonic tissues by qRT-PCR. Potential targets of miR-143 were defined. The functional effect of miR-143 and its targets was investigated in human colon cancer cell lines to confirm miRNA-target association.Results:Both real-time PCR-based expression arrays and qRT-PCR showed that miR-143 was frequently downregulated in 87.5% (35 of 40) of colorectal carcinoma tissues compared with their adjacent non-cancerous colonic tissues. Using in silico predictions, DNA methyltranferase 3A (DNMT3A) was defined as a potential target of miR-143. Restoration of the miR-143 expression in colon cell lines decreased tumour cell growth and soft-agar colony formation, and downregulated the DNMT3A expression in both mRNA and protein levels. DNMT3A was shown to be a direct target of miR-143 by luciferase reporter assay. Furthermore, the miR-143 expression was observed to be inversely correlated with DNMT3A mRNA and protein expression in CRC tissues.Conclusion:Our findings suggest that miR-143 regulates DNMT3A in CRC. These findings elucidated a tumour-suppressive role of miR-143 in the epigenetic aberration of CRC, providing a potential development of miRNA-based targeted approaches for CRC therapy. © 2009 Cancer Research UK.published_or_final_versio
- …