83 research outputs found
Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy
Magnetostatic modes of yttrium iron garnet (YIG) films are investigated by ferromagnetic resonance force microscopy. A thin-film "probe" magnet at the tip of a compliant cantilever introduces a local inhomogeneity in the internal field of the YIG sample. This influences the shape of the sample's magnetostatic modes, thereby measurably perturbing the strength of the force coupled to the cantilever. We present a theoretical model that explains these observations; it shows that the tip-induced variation of the internal field creates either a local "potential barrier" or "potential well" for the magnetostatic waves. The data and model together indicate that local magnetic imaging of ferromagnets is possible, even in the presence of long-range spin coupling, through the introduction of localized magnetostatic modes predicted to arise from sufficiently strong tip fields
The magnetic-resonance force microscope: a new tool for high-resolution, 3-D, subsurface scanned probe imaging
The magnetic-resonance force microscope (MRFM) is a novel scanned probe instrument which combines the three-dimensional (3-D) imaging capabilities of magnetic-resonance imaging with the high sensitivity and resolution of atomic-force microscopy. It will enable nondestructive, chemical-specific, high-resolution microscopic studies and imaging of subsurface properties of a broad range of materials. The MRFM has demonstrated its utility for study of microscopic ferromagnets, and it will enable microscopic understanding of the nonequilibrium spin polarization resulting from spin injection. Microscopic MRFM studies will provide unprecedented insight into the physics of magnetic and spin-based materials. We will describe the principles and the state-of-the-art in magnetic-resonance force microscopy, discuss existing cryogenic MRFM instruments incorporating high-Q, single-crystal microresonators with integral submicrometer probe magnets, and indicate future directions for enhancing MRFM instrument capabilities
Origin of four-fold anisotropy in square lattices of circular ferromagnetic dots
We discuss the four-fold anisotropy of in-plane ferromagnetic resonance (FMR)
field , found in a square lattice of circular Permalloy dots when the
interdot distance gets comparable to the dot diameter . The minimum
, along the lattice axes,
differ by 50 Oe at = 1.1. This anisotropy, not expected in
uniformly magnetized dots, is explained by a non-uniform magnetization
\bm(\br) in a dot in response to dipolar forces in the patterned magnetic
structure. It is well described by an iterative solution of a continuous
variational procedure.Comment: 4 pages, 3 figures, revtex, details of analytic calculation and new
references are adde
- âŠ