152 research outputs found

    Evolution of the fine-structure constant in runaway dilaton models

    Get PDF
    We study the detailed evolution of the fine-structure constant α\alpha in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α\alpha measurements and discuss ways to distinguish it from alternative models for varying α\alpha. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical Λ\LambdaCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive α\alpha measurements, will thus dramatically constrain these scenarios.Comment: 11 pages, 4 figure

    Probing dark energy beyond z=2z=2 with CODEX

    Full text link
    Precision measurements of nature's fundamental couplings and a first measurement of the cosmological redshift drift are two of the key targets for future high-resolution ultra-stable spectrographs such as CODEX. Being able to do both gives CODEX a unique advantage, allowing it to probe dynamical dark energy models (by measuring the behavior of their equation of state) deep in the matter era and thereby testing classes of models that would otherwise be difficult to distinguish from the standard Λ\LambdaCDM paradigm. We illustrate this point with two simple case studies.Comment: 4 pages, 4 figures; submitted to Phys. Rev.

    Dark energy survey year 1 results: The lensing imprint of cosmic voids on the cosmic microwave background

    Get PDF
    Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map from the Marenostrum Institut de Ciencias de l’Espai (MICE) N-body simulation to calibrate our detection strategy for a given void definition and galaxy tracer density. We then identify cosmic voids in Dark Energy Survey (DES) Year 1 data and stack the Planck 2015 lensing convergence map on their locations, probing the consistency of simulated and observed void lensing signals. When fixing the shape of the stacked convergence profile to that calibrated from simulations, we find imprints at the 3σ significance level for various analysis choices. The best measurement strategies based on the MICE calibration process yield S/N ≈ 4 for DES Y1, and the best-fitting amplitude recovered from the data is consistent with expectations from MICE (A ≈ 1). Given these results as well as the agreement between them and N-body simulations, we conclude that the previously reported excess integrated Sachs–Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the Planck CMB lensing map.This work has made use of CosmoHub (see Carretero et al. 2017). CosmoHub has been developed by the Port d’Informacio Cient ´ ´ıfica (PIC), maintained through a collaboration of the Institut de F´ısica d’Altes Energies (IFAE) and the Centro de Investigaciones Energeticas, Medioambientales y Tecnol ´ ogicas (CIEMAT), and was ´ partially funded by the ‘Plan Estatal de Investigacion Cient ´ ´ıfica y Tecnica y de Innovaci ´ on’ program of the Spanish government. ´ Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ao Carlos Chagas Filho de Amparo ˜ a Pesquisa do ` Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnologico and the Minist ´ erio da Ci ´ encia, Tecnologia ˆ e Inovac¸ao, the Deutsche Forschungsgemeinschaft, and the Collab- ˜ orating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambien- ´ tales y Tecnologicas-Madrid, the University of Chicago, Univer- ´ sity College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) ¨ Zurich, Fermi National Accelerator Laboratory, the University of ¨ Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai ` (IEEC/CSIC), the Institut de F´ısica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat¨ Munchen and the associated Excellence Cluster Universe, the Uni- ¨ versity of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. This paper is based in part on observations at Cerro Tololo InterAmerican Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, 306478, and 615929. We acknowledge support from the Brazilian Instituto Nacional de Cienciae Tecnologia ˆ (INCT) e-Universe (CNPq grant 465376/2014-2). This paper has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the US Department of Energy, Office of Science, Office of High Energy Physics. PV acknowledges the support from the grant MIUR PRIN 2015 ‘Cosmology and Fundamental Physics: illuminating the Dark Universe with Euclid’. AK has been supported by a Juan de la Cierva fellowship from MINECO with project number IJC2018-037730-I. Funding for this project was also available in part through SEV-2015-0548 and AYA2017-89891-P. This project has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754558.Peer reviewe
    • …
    corecore