16 research outputs found

    Radiation induced warping of protostellar accretion disks

    Get PDF
    We examine the consequences of radiatively driven warping of accretion disks surrounding pre-main-sequence stars. These disks are stable against warping if the luminosity arises from a steady accretion flow, but are unstable at late times when the intrinsic luminosity of the star overwhelms that provided by the disk. Warps can be excited for stars with luminosities of around 10 solar luminosities or greater, with larger and more severe warps in the more luminous systems. A twisted inner disk may lead to high extinction towards stars often viewed through their disks. After the disk at all radii becomes optically thin, the warp decays gradually on the local viscous timescale, which is likely to be long. We suggest that radiation induced warping may account for the origin of the warped dust disk seen in Beta Pictoris, if the star is only around 10-20 Myr old, and could lead to non-coplanar planetary systems around higher mass stars.Comment: 12 pages, including 3 figures. ApJ Letters, in pres

    ИсслСдованиС физичСских явлСний Π² Π±Π°Ρ€Π±ΠΎΡ‚Π°ΠΆΠ½ΠΎΠΉ Π·ΠΎΠ½Π΅ плавильного Π°Π³Ρ€Π΅Π³Π°Ρ‚Π° «ПобСда» ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ модСлирования Π‘ΠΎΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ 3. Π“ΠΈΠ΄Ρ€ΠΎΠ³Π°Π·ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠ²ΠΊΠΈ Тидкости Π³Π°Π·ΠΎΠΌ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄ΠΎΠ½Π½ΠΎΠΉ ΠΈ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ Ρ„ΡƒΡ€ΠΌ

    Get PDF
    Hydro-gas regularities of liquid combined blowing by gas were studied using cold modeling method at Archimedes criterion for lateral Arl = 12Γ·120 and bottom blowing Arb = 5Γ·60 simulating Pobeda bubbling unit. The blowing was performed simultaneously by bottom lance vertically fixed in centre of reactor and by the lateral lance which was attached at an angle 5Β° to the horizontal axis. The quantitative estimation of instantaneous and average circulation velocities (Vav) of liquid flow elements in different bath areas, depending on the location of blowing zone and Archimedes criterion, was performed. The liquid motion trajectory was determined. A vortex zone was revealed near the liquid surface and the reactor shell, where instantaneous velocity of the liquid flow elements changes from 69.9 to 181.1 mm/s and Vav = 123.8 mm/s. The circulation flows fade in the bulk of liquid and Vav decreases from 123.8 to 47.0 and 54.1 mm/s. It was shown that, in general, circulation velocity depends on the blowing intensity and appears to be higher for the zone of overlapping of lateral and bottom streams. The dynamic blowing conditions, which ensure the direct contact of lateral and bottom jets leading to their interflow and increased spatter formation, were identified. The characteristics of 3 types of surface oscillations for interface phases β€œpure liquid- gas-liquid layer”, as well as the estimation of the lateral and bottom blowing impact on the type of oscillation were provided. It has been noted that the introduction of the bottom blowing (Arb = 5) causes the wave-like motion of liquid (the 2nd type) along with the transverse oscillations of the 1st type, and at higher values of Arb = 25 the angular oscillations of the 3rd type develop. It has been shown that the presence of a lateral jet at the combined blowing decreases angles of bath swinging to 8–12Β° to horizontal axis. For the estimation of oscillation intensity, Ξ”hl = (hl )max – (hl )min value, which means the difference between maximum (hl )max and minimum (hl )min height of liquid for the full-wave oscillations (Ο„), was introduced. The height of liquid (hl ) was plotted as a function of Ο„, Arl , Arb, Ξ”hl was determined on the basis of obtained graph values, which varied upon modeling over the range of 7.7–69.5 mm. The relation between the liquid circulation velocity and the oscillation value (Ξ”hl ) was established for different bath zones and dynamic conditions of the blowing. The impact of all oscillations types on potential erosive lining wear of Pobeda bubbling unit and the completeness of adoption of charging material nearby the bath surface was investigated.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ…ΠΎΠ»ΠΎΠ΄Π½ΠΎΠ³ΠΎ модСлирования Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ критСрия АрхимСда для Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ (ArΠ± = 12Γ·120) ΠΈ Π΄ΠΎΠ½Π½ΠΎΠ³ΠΎ (ArΠ΄ = 5Γ·60) Π΄ΡƒΡ‚ΡŒΡ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊ условиям Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Π°Ρ€Π±ΠΎΡ‚Π°ΠΆΠ½ΠΎΠ³ΠΎ плавильного Π°Π³Ρ€Π΅Π³Π°Ρ‚Π° «ПобСда» (ПАП) исслСдованы гидрогазодинамичСскиС закономСрности ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠ²ΠΊΠΈ Тидкости Π³Π°Π·ΠΎΠΌ. ΠŸΡ€ΠΎΠ΄ΡƒΠ²ΠΊΡƒ осущСствляли ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ Π΄ΠΎΠ½Π½ΠΎΠΉ Ρ„ΡƒΡ€ΠΌΠΎΠΉ, установлСнной Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ ΠΏΠΎ Ρ†Π΅Π½Ρ‚Ρ€Ρƒ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π°, ΠΈ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ, располоТСнной ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 5Β° ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ оси. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° количСствСнная ΠΎΡ†Π΅Π½ΠΊΠ° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΠΈ срСднСй (Vср) скоростСй циркуляции элСмСнтов ΠΏΠΎΡ‚ΠΎΠΊΠ° Тидкости Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… участках Π²Π°Π½Π½Ρ‹ Π² зависимости ΠΎΡ‚ мСстонахоТдСния Π·ΠΎΠ½Ρ‹ ΠΏΡ€ΠΎΠ΄ΡƒΠ²ΠΊΠΈ ΠΈ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² АрхимСда. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° траСктория двиТСния Тидкости. Π’Π±Π»ΠΈΠ·ΠΈ повСрхности Тидкости ΠΈ корпуса Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° вихрСвая Π·ΠΎΠ½Π°, Π³Π΄Π΅ мгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния элСмСнта ΠΏΠΎΡ‚ΠΎΠΊΠ° Тидкости измСняСтся ΠΎΡ‚ 69,9 Π΄ΠΎ 183,1 ΠΌΠΌ/с ΠΈ Vср = 123,8 ΠΌΠΌ/с. Π’ объСмС Тидкости циркуляционныС ΠΏΠΎΡ‚ΠΎΠΊΠΈ Π·Π°Ρ‚ΡƒΡ…Π°ΡŽΡ‚, ΠΈ Vср ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ ΠΎΡ‚ 123,8 Π΄ΠΎ 47,0 ΠΈ 54,1 ΠΌΠΌ/с. Показано, Ρ‡Ρ‚ΠΎ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ циркуляции зависит ΠΎΡ‚ интСнсивности ΠΏΡ€ΠΎΠ΄ΡƒΠ²ΠΊΠΈ Π½Π° Ρ„ΡƒΡ€ΠΌΠ°Ρ… ΠΈ становится Π²Ρ‹ΡˆΠ΅ для области налоТСния Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ ΠΈ Π΄ΠΎΠ½Π½ΠΎΠΉ струй. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ динамичСскиС условия ΠΏΡ€ΠΎΠ΄ΡƒΠ²ΠΊΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ нСпосрСдствСнный ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈ Π΄ΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΠ΅Π»ΠΎΠ², приводящий ΠΊ слиянию ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΌΡƒ Π±Ρ€Ρ‹Π·Π³ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π° характСристика 3 Π²ΠΈΠ΄ΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ повСрхности Ρ€Π°Π·Π΄Π΅Π»Π° Ρ„Π°Π· «чистая ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ – газоТидкостный слой» ΠΈ Π΄Π°Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° влияния Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈ Π΄ΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΡƒΡ‚ΡŒΡ Π½Π° Ρ€Π°Π·Π½ΠΎΠ²ΠΈΠ΄Π½ΠΎΡΡ‚ΡŒ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π²Π²ΠΎΠ΄ Π΄ΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄ΡƒΡ‚ΡŒΡ (ArΠ΄ = 5) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚, наряду с ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹ΠΌΠΈ колСбаниями 1-Π³ΠΎ Ρ‚ΠΈΠΏΠ°, ΠΊ появлСнию Π²ΠΎΠ»Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠ³ΠΎ двиТСния Тидкости (2-ΠΉ Ρ‚ΠΈΠΏ), Π° ΠΏΡ€ΠΈ Π±ΠΎΠ»Π΅Π΅ высоких значСниях ArΠ΄ = 25 – ΠΊ ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌ колСбаниям (3-ΠΉ Ρ‚ΠΈΠΏ). Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠ²ΠΊΠ΅ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ„Π°ΠΊΠ΅Π»Π° ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ ΡƒΠ³Π»Ρ‹ раскачивания Π²Π°Π½Π½Ρ‹ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ Π΄ΠΎ 8–12Β°. Для ΠΎΡ†Π΅Π½ΠΊΠΈ интСнсивности ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π²Π²Π΅Π΄Π΅Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Ξ”hΠΆ = (hΠΆ)max – (hΠΆ)min, Ρ‚.Π΅. Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ максимальной (hΠΆ)max ΠΈ минимальной (hΠΆ)min высотой Тидкости Π·Π° ΠΏΠΎΠ»Π½Ρ‹ΠΉ Ρ†ΠΈΠΊΠ» ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (Ο„). ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½Ρ‹ зависимости высоты Тидкости (hΠΆ) ΠΎΡ‚ Ο„, ArΠ± ΠΈ ArΠ΄, Π½Π° основании ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ξ”hΠΆ, Π²Π°Ρ€ΡŒΠΈΡ€ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ 7,7–69,5 ΠΌΠΌ. Для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… областСй Π²Π°Π½Π½Ρ‹ ΠΈ динамичСских условий ΠΏΡ€ΠΎΠ΄ΡƒΠ²ΠΊΠΈ установлСна взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ циркуляции Тидкости ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ (Ξ”hΠΆ). РассмотрСно влияниС всСх Π²ΠΈΠ΄ΠΎΠ² ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΉ эрозивный износ Ρ„ΡƒΡ‚Π΅Ρ€ΠΎΠ²ΠΊΠΈ ПАП ΠΈ ΠΏΠΎΠ»Π½ΠΎΡ‚Ρƒ усвоСния ΡˆΠΈΡ…Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π²Π±Π»ΠΈΠ·ΠΈ повСрхности Π²Π°Π½Π½Ρ‹

    A catalogue of dense cores and young stellar objects in the Lupus complex based on Herschel Gould Belt Survey observations

    Get PDF
    Context. How the diffuse medium of molecular clouds condenses in dense cores and how many of these cores will evolve in protostars is still a poorly understood step of the star formation process. Much progress is being made in this field, thanks to the extensive imaging of star-forming regions carried out with the Herschel Space Observatory. Aims. The Herschel Gould Belt Survey key project mapped the bulk of nearby star-forming molecular clouds in five far-infrared bands with the aim of compiling complete census of prestellar cores and young, embedded protostars. From the complete sample of prestellar cores, we aim at defining the core mass function and studying its relationship with the stellar initial mass function. Young stellar objects (YSOs) with a residual circumstellar envelope are also detected. Methods. In this paper, we present the catalogue of the dense cores and YSOs/protostars extracted from the Herschel maps of the Lupus I, III, and IV molecular clouds. The physical properties of the detected objects were derived by fitting their spectral energy distributions. Results. A total of 532 dense cores, out of which 103 are presumably prestellar in nature, and 38 YSOs/protostars have been detected in the three clouds. Almost all the prestellar cores are associated with filaments against only about one third of the unbound cores and YSOs/protostars. Prestellar core candidates are found even in filaments that are on average thermally subcritical and over a background column density lower than that measured in other star-forming regions so far. The core mass function of the prestellar cores peaks between 0.2 and 0.3 MβŠ™, and it is compatible with the log-normal shape found in other regions. Herschel data reveal several, previously undetected, protostars and new candidates of Class 0 and Class II with transitional disks. We estimate the evolutionary status of the YSOs/protostars using two independent indicators: the Ξ± index and the fitting of the spectral energy distribution from near- to far-infrared wavelengths. For 70% of the objects, the evolutionary stages derived with the two methods are in agreement. Conclusions. Lupus is confirmed to be a very low-mass star-forming region, in terms of both the prestellar condensations and the diffuse medium. Noticeably, in the Lupus clouds we have found star formation activity associated with interstellar medium at low column density, usually quiescent in other (more massive) star-forming regions

    ИсслСдованиС Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… связСй ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΠ΅Ρ‚ΡŒΡŽ пассивного Ρ€Π΅ΠΆΠΈΠΌΠ° Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΌΠΎΠ·Π³Π° ΠΈ структурами ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ° Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π»Π΅Π³ΠΊΠΎΠΉ Ρ‡Π΅Ρ€Π΅ΠΏΠ½ΠΎ-ΠΌΠΎΠ·Π³ΠΎΠ²ΠΎΠΉ Ρ‚Ρ€Π°Π²ΠΌΠΎΠΉ Π² острой стадии ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ Ρ„ΠœΠ Π’ состояния покоя

    Get PDF
    Mild traumatic brain injury (mTBI) is the most common neurological damage in children that's why it is extremely important to identify and analyze biomarkers that can help in predicting patient's treatment and recovery in period of mTBI. Aim of this study is to verify a hypothesis that functional connectivity disturbances between intact cerebellum and DMN nodes are included in symptomatic manifestation of mTBI.Methods. 28 MR negative patients with mTBI were studied in age from 12 to 17 years (mean age – 14.7 years). The control group consisted of 23 healthy children. All MRI studies wereperformed on a Philips AchievadStream 3.0 T scanner equipped with a 32-channelPhilips dStream head coil. A 4 min rsfMRI gradient-echo echo planar imaging (EPI)sequence was acquired (TR = 3000 ms, echo time (TE) = 30 ms, 80 dynamics withdynamic scan time = 3 s). fMRI data were processed using functional connectivitytoolbox CONN.Results. No statistically significant differences in correlation strengths between control group and group of patients were detected as a result of DMN analysis. Intergroup seed-basedcorrelation ROI analysis revealed statistically significant (p < 0.05) differencein links between DMN regions and vermis (cerebellum): positive link in control group and negative link in groupof patients.Conclusions. The revealed changes in DMN neuronal connection and cerebellar regions in acute stage of mTBI patients can be an initial step of damages leading to cognitive deficit which can be developed in future.ЛСгкая Ρ‡Π΅Ρ€Π΅ΠΏΠ½ΠΎ-мозговая Ρ‚Ρ€Π°Π²ΠΌΠ° (лЧМВ) являСтся Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространСнным нСврологичСским ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ, поэтому Ρ‡Ρ€Π΅Π·Π²Ρ‹Ρ‡Π°ΠΉΠ½ΠΎ Π²Π°ΠΆΠ½ΠΎ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΠΌΠΎΡ‡ΡŒ Π² процСссах лСчСния ΠΈ выздоровлСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° с лЧМВ.ЦСль исслСдования: ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΡ‚ΡŒ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… связСй ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π΅ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½Ρ‹ΠΌ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠΎΠΌ ΠΈ ΡƒΠ·Π»Π°ΠΌΠΈ сСти DMN Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ Π² симптоматичСскоС проявлСниС лЧМВ.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ 28 МР-Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с лЧМВв возрастС ΠΎΡ‚ 12 Π΄ΠΎ 17 Π»Π΅Ρ‚ (срСдний возраст 14,7 Π³ΠΎΠ΄Π°). ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Π³Ρ€ΡƒΠΏΠΏΠ° состояла ΠΈΠ· 23 Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄Π΅Ρ‚Π΅ΠΉ. ВсС МРВ-исслСдования ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ Π½Π° сканСрС Philips Achieva dStream 3,0 TΠ», ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½Π½ΠΎΠΌ 32-канальной Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠΉ ΠΊΠ°Ρ‚ΡƒΡˆΠΊΠΎΠΉ Philips dStream. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° Ρ„ΠœΠ Π’ состояния покоя (EPI ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ, TR = 3000 мс, врСмя эха (TE) = 30 мс, 80 Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΎΠ² с динамичСским Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ сканирования 3 с). Π”Π°Π½Π½Ρ‹Π΅ Ρ„ΠœΠ Π’ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ с использованиСм ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ°ΠΊΠ΅Ρ‚Π° CONN.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. НС ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ³ΠΎ различия Π² значСниях коэффициСнтов Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… связСй ΠΌΠ΅ΠΆΠ΄Ρƒ областями сСти DMN Π² Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΈ контроля. ΠœΠ΅ΠΆΠ³Ρ€ΡƒΠΏΠΏΠΎΠ²ΠΎΠΉ Π°Π½Π°Π»ΠΈΠ· выявил статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ (Ρ€ < 0,05) Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ Π² Π½Π΅ΠΉΡ€ΠΎΠ½Π½Ρ‹Ρ… связях ΠΌΠ΅ΠΆΠ΄Ρƒ частями DMN ΠΈ Ρ‡Π΅Ρ€Π²Π΅ΠΌ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ° (vermis, структурная Ρ‡Π°ΡΡ‚ΡŒ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ°): ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ связь Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ связь Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ².Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ВыявлСнныС измСнСния Π² Π½Π΅ΠΉΡ€ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… связях ΠΌΠ΅ΠΆΠ΄Ρƒ областями DMN ΠΈ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ° Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с лЧМВ Π² остром ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌ этапом ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ, приводящих ΠΊ ΠΊΠΎΠ³Π½ΠΈΡ‚ΠΈΠ²Π½ΠΎΠΌΡƒ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Ρƒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ€Π°Π·Π²ΠΈΡ‚ΡŒΡΡ Π² Π±ΡƒΠ΄ΡƒΡ‰Π΅ΠΌ

    Роль ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΏΡ€ΠΈ острой Ρ‚Ρ€Π°Π²ΠΌΠ΅ шСйного ΠΎΡ‚Π΄Π΅Π»Π° ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½ΠΈΠΊΠ° Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ

    Get PDF
    Aim. To evaluate the role of magnetic resonance imaging (MRI) as a diagnostic method in children with acute trauma of the cervical spine and spinal cord, to compare the correspondence of MRI results with neurologic symptoms in accordance with the ASIA scale.Materials and methods. 156 children with acute trauma of spine and spinal cord at the age from 6 months up to 18 years were studied. MRI was performed on a Phillips Achieva 3T scanner. The standard protocol included MYUR (myelography) in coronal and sagittal projections, STIR and T2VI FS SE in sagittal projection, T2VI SE or T2 * VI FSGE (axial projection), 3D T1VI FSGE before and after contrast enhancement. Contrast substance was injected intravenously in the form of a bolus at the rate of 0.1 mmol/kg (equivalent to 0.1 ml/kg) at a rate of 3 to 4 ml.Results. The causes of cervical spine blunt trauma were: road accidents (55), catatrauma (60), β€œdiver” trauma (21), blunt trauma (20). Intramedullary lesions of the spinal cord were detected: concussion (49), bruising / crushing (27), hematomia (34), disruption with divergence of segments (21), accompanied by edema (141); extramedullary lesions: epi- and subdural, intralesive and sub-connective and soft tissues hematomas (68), ruptures of bundles (48), fractures (108), dislocation and subluxation of the vertebrae (35), traumatic disc herniation (37), spinal cord compression and/or rootlets (63), statics violation (134), instability (156).Conclusion. MRI is the optimal method for spinal cord injury diagnostics. In the acute period of injury this technique has limited application, but it can however serve as a primary diagnostic method in these patients. MRI should be performed no later than the first 72 hours after injury. The most optimal for visualization of cervical spine trauma and spinal cord are T2VI SE and STIR in sagittal projection with suppression of signal from fat. MRI results correlate with neurologic symptoms at the time of performance according to the ASIA scale, and therefore MRI should be performed in all patients with acute cervical spine trauma, whenever possible.ЦСль исслСдования: ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ Ρ€ΠΎΠ»ΡŒ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (МРВ) Π² качСствС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° диагностики Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ с Ρ‚Ρ€Π°Π²ΠΌΠΎΠΉ шСйного ΠΎΡ‚Π΄Π΅Π»Π° ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½ΠΈΠΊΠ° ΠΈ спинного ΠΌΠΎΠ·Π³Π°, ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ соотвСтствиС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² МРВ с нСврологичСскими симптомами ΠΈ шкалой ASIA.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ИсслСдовано 156 Π΄Π΅Ρ‚Π΅ΠΉ с острой Ρ‚Ρ€Π°Π²ΠΌΠΎΠΉ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½ΠΈΠΊΠ° ΠΈ спинного ΠΌΠΎΠ·Π³Π° Π² возрастС ΠΎΡ‚ 6 мСс Π΄ΠΎ 18 Π»Π΅Ρ‚. МРВ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π½Π° Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„Π΅ Phillips Achieva 3 Π’Π». Π‘Ρ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ» исслСдования Π²ΠΊΠ»ΡŽΡ‡Π°Π»: ΠΌΠΈΠ΅Π»ΠΎΠ³Ρ€Π°Ρ„ΠΈΡŽ (MYUR) Π² ΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΠΉ ΠΈ ΡΠ°Π³ΠΈΡ‚Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ проСкциях, STIR ΠΈ Π’2Π’Π˜ FS SE Π² ΡΠ°Π³ΠΈΡ‚Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ, Π’2Π’Π˜ SE ΠΈΠ»ΠΈ Π’2Π’Π˜ FSGE (аксиальная проСкция), 3D Π’1Π’Π˜ FSGE Π΄ΠΎ ΠΈ послС контрастного усилСния. ΠšΠΎΠ½Ρ‚Ρ€Π°ΡΡ‚Π½ΠΎΠ΅ вСщСство вводилось Π²Π½ΡƒΡ‚Ρ€ΠΈΠ²Π΅Π½Π½ΠΎ Π² Π²ΠΈΠ΄Π΅ болюса ΠΈΠ· расчСта 0,1 ммоль/ΠΊΠ³ (эквивалСнтно 0,1 ΠΌΠ»/ΠΊΠ³) со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 3–4 ΠΌΠ».Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ Ρ‚ΡƒΠΏΠΎΠΉ Ρ‚Ρ€Π°Π²ΠΌΡ‹ шСйного ΠΎΡ‚Π΄Π΅Π»Π° ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½ΠΈΠΊΠ° явились: Π΄ΠΎΡ€ΠΎΠΆΠ½ΠΎ-транспортныС ΠΏΡ€ΠΎΠΈΡΡˆΠ΅ΡΡ‚Π²ΠΈΡ (55), ΠΊΠ°Ρ‚Π°Ρ‚Ρ€Π°Π²ΠΌΠ° (60), Ρ‚Ρ€Π°Π²ΠΌΠ° β€œΠ½Ρ‹Ρ€ΡΠ»ΡŒΡ‰ΠΈΠΊΠ°β€ (21), тупая Ρ‚Ρ€Π°Π²ΠΌΠ° (20). Π‘Ρ‹Π»ΠΈ выявлСны интрамСдуллярныС поврСТдСния спинного ΠΌΠΎΠ·Π³Π°: сотрясСниС (49), ΡƒΡˆΠΈΠ±/Ρ€Π°Π·ΠΌΠΎΠ·ΠΆΠ΅Π½ΠΈΠ΅ (27), гСматомиСлия (34), Ρ€Π°Π·Ρ€Ρ‹Π² с расхоТдСниСм ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² (21), ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π²ΡˆΠΈΠ΅ΡΡ ΠΎΡ‚Π΅ΠΊΠΎΠΌ (141); экстрамСдуллярныС поврСТдСния: эпии ΡΡƒΠ±Π΄ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Π΅, Π²Π½ΡƒΡ‚Ρ€ΠΈ- ΠΈ подсвязочныС ΠΈ Π³Π΅ΠΌΠ°Ρ‚ΠΎΠΌΡ‹ мягких Ρ‚ΠΊΠ°Π½Π΅ΠΉ (68), Ρ€Π°Π·Ρ€Ρ‹Π²Ρ‹ связок (48), ΠΏΠ΅Ρ€Π΅Π»ΠΎΠΌΡ‹ (108), Π²Ρ‹Π²ΠΈΡ… ΠΈ ΠΏΠΎΠ΄Π²Ρ‹Π²ΠΈΡ… ΠΏΠΎΠ·Π²ΠΎΠ½ΠΊΠΎΠ² (35), травматичСскиС Π³Ρ€Ρ‹ΠΆΠΈ диска (37), компрСссия спинного ΠΌΠΎΠ·Π³Π° ΠΈ/ΠΈΠ»ΠΈ ΠΊΠΎΡ€Π΅ΡˆΠΊΠΎΠ² (63), Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ статики (134), Π½Π΅ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ (156).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. МРВ – ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ диагностики ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½ΠΎ-спинномозговой Ρ‚Ρ€Π°Π²ΠΌΡ‹. Π’ острый ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Ρ‚Ρ€Π°Π²ΠΌΡ‹ ΠΎΠ½Π° ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½ΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅, Π½ΠΎ ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ диагностики Ρƒ этих Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…. МРВ ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ Π½Π΅ ΠΏΠΎΠ·Π΄Π½Π΅Π΅ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… 72 Ρ‡ послС Ρ‚Ρ€Π°Π²ΠΌΡ‹. НаиболСС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ для Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ‚Ρ€Π°Π²ΠΌΡ‹ шСйного ΠΎΡ‚Π΄Π΅Π»Π° ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½ΠΈΠΊΠ° ΠΈ спинного ΠΌΠΎΠ·Π³Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π’2Π’Π˜ SE ΠΈ STIR Π² ΡΠ°Π³ΠΈΡ‚Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ с ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ сигнала ΠΎΡ‚ ΠΆΠΈΡ€Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ МРВ Π½Π° ΠΌΠΎΠΌΠ΅Π½Ρ‚ выполнСния ΠΊΠΎΡ€Ρ€Π΅Π»ΠΈΡ€ΡƒΡŽΡ‚ с нСврологичСской симптоматикой Π² соотвСтствии со шкалой ASIA, Π° поэтому МРВ слСдуСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Ρƒ всСх ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с острой Ρ‚Ρ€Π°Π²ΠΌΠΎΠΉ шСйного ΠΎΡ‚Π΄Π΅Π»Π° ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½ΠΈΠΊΠ°, ΠΊΠΎΠ³Π΄Π° это Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ

    National scientific conference with international participation Biological rehabilitation of disturbed lands

    No full text
    The 10th national scientific conference with international participation Biological Rehabilitation of Disturbed Lands was held in the city of Yekaterinburg on September 4–7, 2017. More than 180 participants attended the conference from various institutions of 39 Russian cities of Russia and 7 countries (Azerbaijan, Armenia, Belarus, Kazakhstan, Morocco, Turkey, and Ukraine). Participation in the conference of a wide range of researchers and specialists is an indicator that the problem of rehabilitation is not becoming obsolete, but, on the contrary, it is growing more urgent. This problem is among the priority tasks of many regions of Russia and foreign countries in which oil and gas production, various mining industries are developed and the transformation of natural landscapes into post-industrial ones takes place. These problems are discussed at the conference, which takes place every 5 years in Yekaterinburg. Thanks to an active exchange of experience between specialists from different countries and due to analysis and discussion of the results, the prospects of cooperation aimed at improving the ecological situation and rational use of natural resources in the industrialized regions are developing. The publications of proceedings of the conference are of great scientific and practical value for scientists and specialists dealing with the problem of rehabilitation and monitoring of disturbed lands. Evaluating the global character of the problems of the conference, an appeal was addressed to the Governments of the regions of the Russian Federation for targeted financing of basic research in industrial regions with a high concentration of disturbed lands. To protect public health and preserve the gene pool of animals and plants, the need of assessing the quality of products obtained in the regions that undergo biological rehabilitation is emphasized. The published collection of conference proceedings presents the results of the research of the last decade

    The preliminary diffusion tensor imaging study of cerebral microstructure in the acute phase of brain concussion

    Get PDF
    Purpose of the study. Concussion does not cause any lesions available for visualization using computed tomography and magnetic resonance imaging. However, it can cause changes at the microstructural level, which can be detected by the diffusion-tensor imaging. The purpose of this study is to identify the effect of acute concussion on diffusion parameters in the corpus callosum, corticospinal tract, and thalamus in children.Patients and methods. Fractional anisotropy and the apparent diffusion coefficient were determined in 11 patients with a diagnosis of concussion (41 Β± 19 hours from the moment of injury) and in 11 healthy subjects. Philips Achieva dStream 3T magnetic resonance imager was used. Diffusion tensor imaging data were processed in the Philips Intellispace Portal program in the Fibertrack section.Results. Fractional diffusion anisotropy significantly increases and the apparent diffusion coefficient decreases in the thalamus of patients with concussion. In corpus callosum there is a growth trend in fractional anisotropy.Conclusion. The detected changes indicate the initial stage of cell edema in the thalamus caused by concussion. Diffusion-tensor imaging is the only magnetic resonance imaging method which may be sensitive to this pathology
    corecore