14,097 research outputs found

    Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCr2_2S4_4 from first principles

    Full text link
    We have studied the dielectric properties of the ferromagnetic spinel CdCr2_2S4_4 from first principles. Zone-center phonons and Born effective charges were calculated by frozen-phonon and Berry phase techniques within LSDA+U. We find that all infrared-active phonons are quite stable within the cubic space group. The calculated static dielectric constant agrees well with previous measurements. These results suggest that the recently observed anomalous dielectric behavior in CdCr2_2S4_4 is not due to the softening of a polar mode. We suggest further experiments to clarify this point

    Path-integral molecular dynamics simulation of 3C-SiC

    Full text link
    Molecular dynamics simulations of 3C-SiC have been performed as a function of pressure and temperature. These simulations treat both electrons and atomic nuclei by quantum mechanical methods. While the electronic structure of the solid is described by an efficient tight-binding Hamiltonian, the nuclei dynamics is treated by the path integral formulation of statistical mechanics. To assess the relevance of nuclear quantum effects, the results of quantum simulations are compared to others where either the Si nuclei, the C nuclei or both atomic nuclei are treated as classical particles. We find that the experimental thermal expansion of 3C-SiC is realistically reproduced by our simulations. The calculated bulk modulus of 3C-SiC and its pressure derivative at room temperature show also good agreement with the available experimental data. The effect of the electron-phonon interaction on the direct electronic gap of 3C-SiC has been calculated as a function of temperature and related to results obtained for bulk diamond and Si. Comparison to available experimental data shows satisfactory agreement, although we observe that the employed tight-binding model tends to overestimate the magnitude of the electron-phonon interaction. The effect of treating the atomic nuclei as classical particles on the direct gap of 3C-SiC has been assessed. We find that non-linear quantum effects related to the atomic masses are particularly relevant at temperatures below 250 K.Comment: 14 pages, 15 figure

    Entanglement entropy and the Berry phase in solid states

    Get PDF
    The entanglement entropy (von Neumann entropy) has been used to characterize the complexity of many-body ground states in strongly correlated systems. In this paper, we try to establish a connection between the lower bound of the von Neumann entropy and the Berry phase defined for quantum ground states. As an example, a family of translational invariant lattice free fermion systems with two bands separated by a finite gap is investigated. We argue that, for one dimensional (1D) cases, when the Berry phase (Zak's phase) of the occupied band is equal to π×(oddinteger)\pi \times ({odd integer}) and when the ground state respects a discrete unitary particle-hole symmetry (chiral symmetry), the entanglement entropy in the thermodynamic limit is at least larger than ln2\ln 2 (per boundary), i.e., the entanglement entropy that corresponds to a maximally entangled pair of two qubits. We also discuss this lower bound is related to vanishing of the expectation value of a certain non-local operator which creates a kink in 1D systems.Comment: 11 pages, 4 figures, new references adde

    Origin of ferroelectricity in the multiferroic barium fluorides BaMF4

    Full text link
    We present a first principles study of the series of multiferroic barium fluorides with the composition BaMF4, where M is Mn, Fe, Co, or Ni. We discuss trends in the structural, electronic, and magnetic properties, and we show that the ferroelectricity in these systems results from the "freezing in" of a single unstable polar phonon mode. In contrast to the case of the standard perovskite ferroelectrics, this structural distortion is not accompanied by charge transfer between cations and anions. Thus, the ferroelectric instability in the multiferroic barium fluorides arises solely due to size effects and the special geometrical constraints of the underlying crystal structure.Comment: 8 pages, 6 figures, 3 table

    Evolution of an ancient protein function involved in organized multicellularity in animals.

    Get PDF
    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals

    A mixed ultrasoft/normconserved pseudopotential scheme

    Get PDF
    A variant of the Vanderbilt ultrasoft pseudopotential scheme, where the normconservation is released for only one or a few angular channels, is presented. Within this scheme some difficulties of the truly ultrasoft pseudopotentials are overcome without sacrificing the pseudopotential softness. i) Ghost states are easily avoided without including semicore shells. ii) The ultrasoft pseudo-charge-augmentation functions can be made more soft. iii) The number of nonlocal operators is reduced. The scheme will be most useful for transition metals, and the feasibility and accuracy of the scheme is demonstrated for the 4d transition metal rhodium.Comment: 4 pages, 2 figure

    Electric Polarization of Heteropolar Nanotubes as a Geometric Phase

    Full text link
    The three-fold symmetry of planar boron nitride, the III-V analog to graphene, prohibits an electric polarization in its ground state, but this symmetry is broken when the sheet is wrapped to form a BN nanotube. We show that this leads to an electric polarization along the nanotube axis which is controlled by the quantum mechanical boundary conditions on its electronic states around the tube circumference. Thus the macroscopic dipole moment has an {\it intrinsically nonlocal quantum} mechanical origin from the wrapped dimension. We formulate this novel phenomenon using the Berry's phase approach and discuss its experimental consequences.Comment: 4 pages with 3 eps figures, updated with correction to Eqn (9

    First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3

    Full text link
    We carry out a completely first-principles study of the ferroelectric phase transitions in BaTiO3_3. Our approach takes advantage of two features of these transitions: the structural changes are small, and only low-energy distortions are important. Based on these observations, we make systematically improvable approximations which enable the parameterization of the complicated energy surface. The parameters are determined from first-principles total-energy calculations using ultra-soft pseudopotentials and a preconditioned conjugate-gradient scheme. The resulting effective Hamiltonian is then solved by Monte Carlo simulation. The calculated phase sequence, transition temperatures, latent heats, and spontaneous polarizations are all in good agreement with experiment. We find the transitions to be intermediate between order-disorder and displacive character. We find all three phase transitions to be of first order. The roles of different interactions are discussed.Comment: 33 pages latex file, 9 figure

    First principles study of the multiferroics BiFeO3_{3}, Bi2_{2}FeCrO6_{6}, and BiCrO3_{3}: Structure, polarization, and magnetic ordering temperature

    Full text link
    We present results of an {\it ab initio} density functional theory study of three bismuth-based multiferroics, BiFeO3_{3}, Bi2_{2}FeCrO6_{6}, and BiCrO3_{3}. We disuss differences in the crystal and electronic structure of the three systems, and we show that the application of the LDA+UU method is essential to obtain realistic structural parameters for Bi2_{2}FeCrO6_{6}. We calculate the magnetic nearest neighbor coupling constants for all three systems and show how Anderson's theory of superexchange can be applied to explain the signs and relative magnitudes of these coupling constants. From the coupling constants we then obtain a mean-field approximation for the magnetic ordering temperatures. Guided by our comparison of these three systems, we discuss the possibilities for designing a multiferroic material with large magnetization above room temperature.Comment: 8 Pages, 4 Figure

    Towards a microscopic theory of toroidal moments in bulk periodic crystals

    Full text link
    We present a theoretical analysis of magnetic toroidal moments in periodic systems, in the limit in which the toroidal moments are caused by a time and space reversal symmetry breaking arrangement of localized magnetic dipole moments. We summarize the basic definitions for finite systems and address the question of how to generalize these definitions to the bulk periodic case. We define the toroidization as the toroidal moment per unit cell volume, and we show that periodic boundary conditions lead to a multivaluedness of the toroidization, which suggests that only differences in toroidization are meaningful observable quantities. Our analysis bears strong analogy to the modern theory of electric polarization in bulk periodic systems, but we also point out some important differences between the two cases. We then discuss the instructive example of a one-dimensional chain of magnetic moments, and we show how to properly calculate changes of the toroidization for this system. Finally, we evaluate and discuss the toroidization (in the local dipole limit) of four important example materials: BaNiF_4, LiCoPO_4, GaFeO_3, and BiFeO_3.Comment: replaced with final (published) version, which includes some changes in the text to improve the clarity of presentatio
    corecore