189 research outputs found

    A Generic Renormalization Method in Curved Spaces and at Finite Temperature

    Full text link
    Based only on simple principles of renormalization in coordinate space, we derive closed renormalized amplitudes and renormalization group constants at 1- and 2-loop orders for scalar field theories in general backgrounds. This is achieved through a generic renormalization procedure we develop exploiting the central idea behind differential renormalization, which needs as only inputs the propagator and the appropriate laplacian for the backgrounds in question. We work out this generic coordinate space renormalization in some detail, and subsequently back it up with specific calculations for scalar theories both on curved backgrounds, manifestly preserving diffeomorphism invariance, and at finite temperature.Comment: 15pp., REVTeX, UB-ECM-PF 94/1

    Two-Loop Beta Functions Without Feynman Diagrams

    Get PDF
    Starting from a consistency requirement between T-duality symmetry and renormalization group flows, the two-loop metric beta function is found for a d=2 bosonic sigma model on a generic, torsionless background. The result is obtained without Feynman diagram calculations, and represents further evidence that duality symmetry severely constrains renormalization flows.Comment: 4 pp., REVTeX. Added discussion on scheme (in)dependence; final version to appear in Phys. Rev. Let

    The Hidden Spatial Geometry of Non-Abelian Gauge Theories

    Full text link
    The Gauss law constraint in the Hamiltonian form of the SU(2)SU(2) gauge theory of gluons is satisfied by any functional of the gauge invariant tensor variable ϕij=BiaBja\phi^{ij} = B^{ia} B^{ja}. Arguments are given that the tensor Gij=(ϕ−1)ij det⁥BG_{ij} = (\phi^{-1})_{ij}\,\det B is a more appropriate variable. When the Hamiltonian is expressed in terms of ϕ\phi or GG, the quantity Γjki\Gamma^i_{jk} appears. The gauge field Bianchi and Ricci identities yield a set of partial differential equations for Γ\Gamma in terms of GG. One can show that Γ\Gamma is a metric-compatible connection for GG with torsion, and that the curvature tensor of Γ\Gamma is that of an Einstein space. A curious 3-dimensional spatial geometry thus underlies the gauge-invariant configuration space of the theory, although the Hamiltonian is not invariant under spatial coordinate transformations. Spatial derivative terms in the energy density are singular when det⁥G=det⁥B=0\det G=\det B=0. These singularities are the analogue of the centrifugal barrier of quantum mechanics, and physical wave-functionals are forced to vanish in a certain manner near det⁥B=0\det B=0. It is argued that such barriers are an inevitable result of the projection on the gauge-invariant subspace of the Hilbert space, and that the barriers are a conspicuous way in which non-abelian gauge theories differ from scalar field theories.Comment: 19 pages, TeX, CTP #223

    A Two-loop Test of Buscher's T-duality I

    Full text link
    We study the two loop quantum equivalence of sigma models related by Buscher's T-duality transformation. The computation of the two loop perturbative free energy density is performed in the case of a certain deformation of the SU(2) principal sigma model, and its T-dual, using dimensional regularization and the geometric sigma model perturbation theory. We obtain agreement between the free energy density expressions of the two models.Comment: 28 pp, Latex, references adde

    Differential Regularization of Topologically Massive Yang-Mills Theory and Chern-Simons Theory

    Full text link
    We apply differential renormalization method to the study of three-dimensional topologically massive Yang-Mills and Chern-Simons theories. The method is especially suitable for such theories as it avoids the need for dimensional continuation of three-dimensional antisymmetric tensor and the Feynman rules for three-dimensional theories in coordinate space are relatively simple. The calculus involved is still lengthy but not as difficult as other existing methods of calculation. We compute one-loop propagators and vertices and derive the one-loop local effective action for topologically massive Yang-Mills theory. We then consider Chern-Simons field theory as the large mass limit of topologically massive Yang-Mills theory and show that this leads to the famous shift in the parameter kk. Some useful formulas for the calculus of differential renormalization of three-dimensional field theories are given in an Appendix.Comment: 25 pages, 4 figures. Several typewritten errors and inappropriate arguments are corrected, especially the correct adresses of authors are give

    RG Flow Irreversibility, C-Theorem and Topological Nature of 4D N=2 SYM

    Get PDF
    We determine the exact beta function and a RG flow Lyapunov function for N=2 SYM with gauge group SU(n). It turns out that the classical discriminants of the Seiberg-Witten curves determine the RG potential. The radial irreversibility of the RG flow in the SU(2) case and the non-perturbative identity relating the uu-modulus and the superconformal anomaly, indicate the existence of a four dimensional analogue of the c-theorem for N=2 SYM which we formulate for the full SU(n) theory. Our investigation provides further evidence of the essentially topological nature of the theory.Comment: 9 pages, LaTeX file. Discussion on WDVV and integrability. References added. Version published in PR

    Implicit Regularization and Renormalization of QCD

    Full text link
    We apply the Implicit Regularization Technique (IR) in a non-abelian gauge theory. We show that IR preserves gauge symmetry as encoded in relations between the renormalizations constants required by the Slavnov-Taylor identities at the one loop level of QCD. Moreover, we show that the technique handles divergencies in massive and massless QFT on equal footing.Comment: (11 pages, 2 figures

    O(d,d) invariance at two and three loops

    Get PDF
    We show that in a two-dimensional sigma-model whose fields only depend on one target space co-ordinate, the O(d,d) invariance of the conformal invariance conditions observed at one loop is preserved at two loops (in the general case with torsion) and at three loops (in the case without torsion).Comment: 21 pages. Plain Tex. Uses Harvmac ("b" option). Revised Version with references added and minor errors correcte

    Relative entropy in 2d Quantum Field Theory, finite-size corrections and irreversibility of the Renormalization Group

    Get PDF
    The relative entropy in two-dimensional Field Theory is studied for its application as an irreversible quantity under the Renormalization Group, relying on a general monotonicity theorem for that quantity previously established. In the cylinder geometry, interpreted as finite-temperature field theory, one can define from the relative entropy a monotonic quantity similar to Zamolodchikov's c function. On the other hand, the one-dimensional quantum thermodynamic entropy also leads to a monotonic quantity, with different properties. The relation of thermodynamic quantities with the complex components of the stress tensor is also established and hence the entropic c theorems are proposed as analogues of Zamolodchikov's c theorem for the cylinder geometry.Comment: 5 pages, Latex file, revtex, reorganized to best show the generality of the results, version to appear in Phys. Rev. Let
    • 

    corecore