24 research outputs found

    MR spectroscopy of hepatic fat and adiponectin and leptin levels during testosterone therapy in type 2 diabetes: a randomized, double-blinded, placebo-controlled trial:A randomized, double-blinded, placebo-controlled trial

    Get PDF
    Background Men with type 2 diabetes mellitus (T2D) often have lowered testosterone levels and an increased risk of cardiovascular disease (CVD). Ectopic fat increases the risk of CVD, whereas subcutaneous gluteofemoral fat protects against CVD and has a beneficial adipokine-secreting profile. Hypothesis Testosterone replacement therapy (TRT) may reduce the content of ectopic fat and improve the adipokine profile in men with T2D. Design and methods A randomized, double-blinded, placebo-controlled study in 39 men aged 50–70 years with T2D and bioavailable testosterone levels &lt;7.3 nmol/L. Patients were randomized to TRT (n = 20) or placebo gel (n = 19) for 24 weeks. Thigh subcutaneous fat area (TFA, %fat of total thigh volume), subcutaneous abdominal adipose tissue (SAT, % fat of total abdominal volume) and visceral adipose tissue (VAT, % fat of total abdominal volume) were measured by magnetic resonance (MR) imaging. Hepatic fat content was estimated by single-voxel MR spectroscopy. Adiponectin and leptin levels were measured by in-house immunofluorometric assay. Coefficients (b) represent the placebo-controlled mean effect of intervention. Results TFA (b = −3.3 percentage points (pp), P = 0.009), SAT (b = −3.0 pp, P = 0.006), levels of adiponectin (b = −0.4 mg/L, P = 0.045), leptin (b = −4.3 µg/mL, P &lt; 0.001), leptin:adiponectin ratio (b = −0.53, P = 0.001) and HDL cholesterol (b = −0.11 mmol/L, P = 0.009) decreased during TRT compared with placebo. Hepatic fat content and VAT were unchanged. Conclusions The effects of TRT on cardiovascular risk markers were ambiguous. We observed potentially harmful changes in cardiovascular risk parameters, markedly reduced subcutaneous fat and unchanged ectopic fat during TRT and a reduction in adiponectin levels. On the other hand, the decrease in leptin and leptin:adiponectin ratio assessments could reflect an amelioration of the cardiovascular risk profile linked to hyperleptinaemia in ageing men with T2D. </jats:sec

    Insulin Resistance Is Not Conserved in Myotubes Established from Women with PCOS

    Get PDF
    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among premenopausal women, who often develop insulin resistance. We tested the hypothesis that insulin resistance in skeletal muscle of patients with polycystic ovary syndrome (PCOS) is an intrinsic defect, by investigating the metabolic characteristics and gene expression of in vitro differentiated myotubes established from well characterized PCOS subjects.Using radiotracer techniques, RT-PCR and enzyme kinetic analysis we examined myotubes established from PCOS subjects with or without pioglitazone treatment, versus healthy control subjects who had been extensively metabolically characterized in vivo. Results. Myotubes established from PCOS and matched control subjects comprehensively expressed all insulin-sensitive biomarkers; glucose uptake and oxidation, glycogen synthesis and lipid uptake. There were no significant differences between groups either at baseline or during acute insulin stimulation, although in vivo skeletal muscle was insulin resistant. In particular, we found no evidence for defects in insulin-stimulated glycogen synthase activity between groups. Myotubes established from PCOS patients with or without pioglitazone treatment also showed no significant differences between groups, neither at baseline nor during acute insulin stimulation, although in vivo pioglitazone treatment significantly improved insulin sensitivity. Consistently, the myotube cultures failed to show differences in mRNA levels of genes previously demonstrated to differ in PCOS patients with or without pioglitazone treatment (PLEK, SLC22A16, and TTBK).These results suggest that the mechanisms governing insulin resistance in skeletal muscle of PCOS patients in vivo are not primary, but rather adaptive.ClinicalTrials.gov NCT00145340

    First Genome-Wide Association Study of Latent Autoimmune Diabetes in Adults Reveals Novel Insights Linking Immune and Metabolic Diabetes

    Get PDF
    OBJECTIVELatent autoimmune diabetes in adults (LADA) shares clinical features with both type 1 and type 2 diabetes; however, there is ongoing debate regarding the precise definition of LADA. Understanding its genetic basis is one potential strategy to gain insight into appropriate classification of this diabetes subtype.RESEARCH DESIGN AND METHODSWe performed the first genome-wide association study of LADA in case subjects of European ancestry versus population control subjects (n = 2,634 vs. 5,947) and compared against both case subjects with type 1 diabetes (n = 2,454 vs. 968) and type 2 diabetes (n = 2,779 vs. 10,396).RESULTSThe leading genetic signals were principally shared with type 1 diabetes, although we observed positive genetic correlations genome-wide with both type 1 and type 2 diabetes. Additionally, we observed a novel independent signal at the known type 1 diabetes locus harboring PFKFB3, encoding a regulator of glycolysis and insulin signaling in type 2 diabetes and inflammation and autophagy in autoimmune disease, as well as an attenuation of key type 1-associated HLA haplotype frequencies in LADA, suggesting that these are factors that distinguish childhood-onset type 1 diabetes from adult autoimmune diabetes.CONCLUSIONSOur results support the need for further investigations of the genetic factors that distinguish forms of autoimmune diabetes as well as more precise classification strategies.Peer reviewe
    corecore