466 research outputs found
Empirical Fit to Inelastic Electron-Deuteron and Electron-Neutron Resonance Region Transverse Cross Sections
An empirical fit is described to measurements of inclusive inelastic
electron-deuteron cross sections in the kinematic r ange of four-momentum
transfer GeV and final state invariant mass GeV.
The deuteron fit relies on a fit of the ratio of longitudinal to
transverse cross sections for the proton, and the assumption . The
underlying fit parameters describe the average cross section for proton and
neutron, with a plane-wave impulse approximation used to fit to the deuteron
data. An additional term is used to fill in the dip between the quasi-elastic
peak and the resonance. The mean deviation of data from the fit
is 3%, with less than 4% of the data points deviating from the fit by more than
10%.Comment: 16 pages, 5 figures, submitted to Phys. Rev. C. Text clarified in
response to referee comment
Hadron Spin Dynamics
Spin effects in exclusive and inclusive reactions provide an essential new
dimension for testing QCD and unraveling hadron structure. Remarkable new
experiments from SLAC, HERMES (DESY), and the Jefferson Laboratory present many
challenges to theory, including measurements at HERMES and SMC of the single
spin asymmetries in pion electroproduction, where the proton is polarized
normal to the scattering plane. This type of single spin asymmetry may be due
to the effects of rescattering of the outgoing quark on the spectators of the
target proton, an effect usually neglected in conventional QCD analyses. Many
aspects of spin, such as single-spin asymmetries and baryon magnetic moments
are sensitive to the dynamics of hadrons at the amplitude level, rather than
probability distributions. I illustrate the novel features of spin dynamics for
relativistic systems by examining the explicit form of the light-front
wavefunctions for the two-particle Fock state of the electron in QED, thus
connecting the Schwinger anomalous magnetic moment to the spin and orbital
momentum carried by its Fock state constituents and providing a transparent
basis for understanding the structure of relativistic composite systems and
their matrix elements in hadronic physics. I also present a survey of
outstanding spin puzzles in QCD, particularly the double transverse spin
asymmetry A_{NN} in elastic proton-proton scattering, the J/psi to rho-pi
puzzle, and J/psi polarization at the Tevatron.Comment: Concluding theory talk presented at SPIN2001, the Third
Circum-Pan-Pacific Symposium on High Energy Physics, October, 2001, Beijin
Higher twist analysis of the proton g_1 structure function
We perform a global analysis of all available spin-dependent proton structure
function data, covering a large range of Q^2, 1 < Q^2 < 30 GeV^2, and calculate
the lowest moment of the g_1 structure function as a function of Q^2. From the
Q^2 dependence of the lowest moment we extract matrix elements of twist-4
operators, and determine the color electric and magnetic polarizabilities of
the proton to be \chi_E = 0.026 +- 0.015 (stat) + 0.021/-0.024 (sys) and \chi_B
= -0.013 -+ 0.007 (stat) - 0.010/+0.012 (sys), respectively.Comment: 6 pages, 2 figures, to appear in Phys. Lett.
Self-Consistent Data Analysis of the Proton Structure Function g1 and Extraction of its Moments
The reanalysis of all available world data on the longitudinal asymmetry A||
is presented. The proton structure function g1 was extracted within a unique
framework of data inputs and assumptions. These data allowed for a reliable
evaluation of moments of the structure function g1 in the Q2 range from 0.2 up
to 30 GeV2. The Q2 evolution of the moments was studied in QCD by means of
Operator Product Expansion (OPE).Comment: Proceeding of 3rd International Symposium on the
Gerasimov-Drell-Hearn Sum Rule and its extensions, Old Dominion University,
Norfolk, Virginia June 2-5, 200
Soft pion theorem for hard near threshold pion production
We prove new soft pion theorem for the near threshold pion production by a
hard electromagnetic probe. This theorem relates various near threshold pion
production amplitudes to the nucleon distribution amplitudes. The new soft pion
theorem is in a good agreement with the SLAC data for F_2^p(W,Q^2) for W^2 <
1.4 GeV^2 and 7 < Q^2 < 30.7 GeV^2.Comment: 9 pages, revised version, more general analysi
Leading-Log Effects in the Resonance Electroweak Form Factors
We study log corrections to inelastic scattering at high Bjorken x for Q^2
from 1 to 21 GeV^2. At issue is the presence of log corrections, which can be
absent if high x scattering has damped gluon radiation. We find logarithmic
correction of the scaling curve extrapolated to low Q^2 improves the duality
between it and the resonance plus background data in the Delta region,
indicating log corrections exist in the data. However, at W > 2 GeV and high x,
the data shows a (1-x)^3 form. Log corrections in one situation but not in
another can be reconciled by a W- or Q^2- dependent higher twist correction.Comment: 13 pages, report nos. RPI-94-N90 and WM-94-106, revtex, two figures
(available by fax or post
Light-cone QCD predictions for elastic ed-scattering in the intermediate energy region
The contributions of helicity-flip matrix elements to the deuteron form
factors are discussed in the light-cone frame. Normalized , ,
and are obtained in a simple QCD-inspired model. We find
that plays an important role in . Our numerical results
are consistent with the data in the intermediate energy region.Comment: 9 pages, REVTeX file, 5 figure
Global Analysis of Data on the Proton Structure Function g1 and Extraction of its Moments
Inspired by recent measurements with the CLAS detector at Jefferson Lab, we
perform a self-consistent analysis of world data on the proton structure
function g1 in the range 0.17 < Q2 < 30 (GeV/c)**2. We compute for the first
time low-order moments of g1 and study their evolution from small to large
values of Q2. The analysis includes the latest data on both the unpolarized
inclusive cross sections and the ratio R = sigmaL / sigmaT from Jefferson Lab,
as well as a new model for the transverse asymmetry A2 in the resonance region.
The contributions of both leading and higher twists are extracted, taking into
account effects from radiative corrections beyond the next-to-leading order by
means of soft-gluon resummation techniques. The leading twist is determined
with remarkably good accuracy and is compared with the predictions obtained
using various polarized parton distribution sets available in the literature.
The contribution of higher twists to the g1 moments is found to be
significantly larger than in the case of the unpolarized structure function F2.Comment: 18 pages, 13 figures, to appear in Phys. Rev.
- …
