141 research outputs found
Shortcomings of the Big Bounce derivation in Loop Quantum Cosmology
We give a prescription to define in Loop Quantum Gravity the electric field
operator related to the scale factor of an homogeneous and isotropic
cosmological space-time. This procedure allows to link the fundamental theory
with its cosmological implementation. In view of the conjugate relation
existing between holonomies and fluxes, the edge length and the area of
surfaces in the fiducial metric satisfy a duality condition. As a consequence,
the area operator has a discrete spectrum also in Loop Quantum Cosmology. This
feature makes the super-Hamiltonian regularization an open issue of the whole
formulation.Comment: 4 pages, accepted for publication in Phys. Rev. D as a Rapid
Communicatio
Bianchi I model in terms of nonstandard loop quantum cosmology: Quantum dynamics
We analyze the quantum Bianchi I model in the setting of the nonstandard loop
quantum cosmology. Elementary observables are used to quantize the volume
operator. The spectrum of the volume operator is bounded from below and
discrete. The discreteness may imply a foamy structure of spacetime at
semiclassical level. The results are described in terms of a free parameter
specifying loop geometry to be determined in astro-cosmo observations. An
evolution of the quantum model is generated by the so-called true Hamiltonian,
which enables an introduction of a time parameter valued in the set of all real
numbers.Comment: 18 pages, version accepted for publication by Class. Quant. Gra
Effective dynamics of the closed loop quantum cosmology
In this paper we study dynamics of the closed FRW model with holonomy
corrections coming from loop quantum cosmology. We consider models with a
scalar field and cosmological constant. In case of the models with cosmological
constant and free scalar field, dynamics reduce to 2D system and analysis of
solutions simplify. If only free scalar field is included then universe
undergoes non-singular oscillations. For the model with cosmological constant,
different behaviours are obtained depending on the value of . If the
value of is sufficiently small, bouncing solutions with asymptotic de
Sitter stages are obtained. However if the value of exceeds critical
value then solutions become oscillatory. Subsequently we study
models with a massive scalar field. We find that this model possess generic
inflationary attractors. In particular field, initially situated in the bottom
of the potential, is driven up during the phase of quantum bounce. This
subsequently leads to the phase of inflation. Finally we find that, comparing
with the flat case, effects of curvature do not change qualitatively dynamics
close to the phase of bounce. Possible effects of inverse volume corrections
are also briefly discussed.Comment: 18 pages, 11 figure
Dirac quantization of membrane in time dependent orbifold
We present quantum theory of a membrane propagating in the vicinity of a time
dependent orbifold singularity. The dynamics of a membrane, with the parameters
space topology of a torus, winding uniformly around compact dimension of the
embedding spacetime is mathematically equivalent to the dynamics of a closed
string in a flat FRW spacetime. The construction of the physical Hilbert space
of a membrane makes use of the kernel space of self-adjoint constraint
operators. It is a subspace of the representation space of the constraints
algebra. There exist non-trivial quantum states of a membrane evolving across
the singularity.Comment: 16 pages, no figures, version accepted for publication in Journal of
High Energy Physic
CFU-S(11) activity does not localize solely with the aorta in the aorta-gonad-mesonephros region
The aorta-gonad-mesonephros (AGM) region is a potent hematopoietic site in
the midgestation mouse conceptus and first contains colony-forming
units-spleen day 11 (CFU-S(11)) at embryonic day 10 (E10). Because
CFU-S(11) activity is present in the AGM region before the onset of
hematopoietic stem cell (HSC) activity, CFU-S(11) activity in the complex
developing vascular and urogenital regions of the AGM was localized. From
E10 onward, CFU-S(11) activity is associated with the aortic vasculature,
and is found also in the urogenital ridges (UGRs). Together with data
obtained from organ explant cultures, in which up to a 16-fold increase in
CFU-S(11) activity was observed, it was determined that CFU-S(11) can be
increased autonomously both in vascular sites and in UGRs. Furthermore,
CFU-S(11) activity is present in vitelline and umbilical vessels. This,
together with the presence of CFU-S(11) in the UGRs 2 days before HSC
activity, suggests both temporally and spatially distinct emergent sources
of CFU-S(11). (Blood. 2000;96:2902-2904
Observational hints on the Big Bounce
In this paper we study possible observational consequences of the bouncing
cosmology. We consider a model where a phase of inflation is preceded by a
cosmic bounce. While we consider in this paper only that the bounce is due to
loop quantum gravity, most of the results presented here can be applied for
different bouncing cosmologies. We concentrate on the scenario where the scalar
field, as the result of contraction of the universe, is driven from the bottom
of the potential well. The field is amplified, and finally the phase of the
standard slow-roll inflation is realized. Such an evolution modifies the
standard inflationary spectrum of perturbations by the additional oscillations
and damping on the large scales. We extract the parameters of the model from
the observations of the cosmic microwave background radiation. In particular,
the value of inflaton mass is equal to GeV. In
our considerations we base on the seven years of observations made by the WMAP
satellite. We propose the new observational consistency check for the phase of
slow-roll inflation. We investigate the conditions which have to be fulfilled
to make the observations of the Big Bounce effects possible. We translate them
to the requirements on the parameters of the model and then put the
observational constraints on the model. Based on assumption usually made in
loop quantum cosmology, the Barbero-Immirzi parameter was shown to be
constrained by from the cosmological observations. We have
compared the Big Bounce model with the standard Big Bang scenario and showed
that the present observational data is not informative enough to distinguish
these models.Comment: 25 pages, 8 figures, JHEP3.cl
Evolution in bouncing quantum cosmology
We present the method of describing an evolution in quantum cosmology in the
framework of the reduced phase space quantization of loop cosmology. We apply
our method to the flat Friedman-Robertson-Walker model coupled to a massless
scalar field. We identify the physical quantum Hamiltonian that is
positive-definite and generates globally an unitary evolution of considered
quantum system. We examine properties of expectation values of physical
observables in the process of the quantum big bounce transition. The dispersion
of evolved observables are studied for the Gaussian state. Calculated relative
fluctuations enable an examination of the semi-classicality conditions and
possible occurrence of the cosmic forgetfulness. Preliminary estimations based
on the cosmological data suggest that there was no cosmic amnesia. Presented
results are analytical, and numerical computations are only used for the
visualization purposes. Our method may be generalized to sophisticated
cosmological models including the Bianchi type universes.Comment: 28 pages, 7 figures. Matches version published in Class. Quantum Gra
Turning big bang into big bounce: II. Quantum dynamics
We analyze the big bounce transition of the quantum FRW model in the setting
of the nonstandard loop quantum cosmology (LQC). Elementary observables are
used to quantize composite observables. The spectrum of the energy density
operator is bounded and continuous. The spectrum of the volume operator is
bounded from below and discrete. It has equally distant levels defining a
quantum of the volume. The discreteness may imply a foamy structure of
spacetime at semiclassical level which may be detected in astro-cosmo
observations. The nonstandard LQC method has a free parameter that should be
fixed in some way to specify the big bounce transition.Comment: 14 pages, no figures, version accepted for publication in Class.
Quant. Gra
An actionable guide to creating Educational Escape Rooms: handbook
Sem resumo disponível.publishe
Expression analysis of the TAB2 protein in adult mouse tissues
Background: The Interleukin-1 (IL-1) signaling component TAK1 binding protein 2 (TAB2) plays a role in activating the NFκB and JNK signaling pathways. Additionally, TAB2 functions in the nucleus as a repressor of NFκB-mediated gene regulation. Objective: To obtain insight into the function of TAB2 in the adult mouse, we analyzed the in vivo TAB2 expression pattern. Materials and methods: Cell lines and adult mouse tissues were analyzed for TAB2 protein expression and localization. Results: Immunohistochemical staining for TAB2 protein revealed expression in the vascular endothelium of most tissues, hematopoietic cells and brain cells. While TAB2 is localized in both the nucleus and the cytoplasm in cell lines, cytoplasmic localization predominates in hematopoietic tissues in vivo. Conclusions: The TAB2 expression pattern shows striking similarities with previously reported IL-1 receptor expression and NFκB activation patterns, suggesting that TAB2 in vivo is playing a role in these signaling pathways
- …