50 research outputs found

    Spontaneous acute and chronic spinal cord injuries in paraplegic dogs: a comparative study of in vivo diffusion tensor imaging.

    No full text
    STUDY DESIGN: Prospective observational-analytical study. OBJECTIVES: Description of diffusion tensor imaging (DTI) metrics obtained from the spinal cord (SC) of dogs with severe acute or chronic spontaneous, non-experimentally induced spinal cord injury (SCI) and correlation of DTI values with lesion extent of SCI measured in T2-weighted (T2W) magnetic resonance imaging sequences. SETTING: Hannover, Germany. METHODS: Forty-seven paraplegic dogs, 32 with acute and 15 with chronic SCI, and 6 disease controls were included. T2W and DTI sequences of the thoracolumbar spinal cord were performed. Values of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were obtained from the epicentre of the lesion and one SC segment cranially and caudally and compared between groups. Pearson's correlation coefficient was calculated between DTI and T2W metrics. RESULTS: During acute SCI, FA values were increased (P=0.0065) and ADC values were decreased (P=0.0099) at epicentres compared to disease controls. FA values obtained from dogs with chronic SCI were lower (P<0.0001 epicentres and caudally; P=0.0002 cranially) and ADC showed no differences compared to disease control values. Dogs with chronic SCI revealed lower FA and higher ADC compared to dogs with acute SCI (P<0.0001 for both values at all localisations). FA values from epicentre and cranially to the lesion during chronic SCI correlated with extent of lesion (r=0.5517; P=0.0052 epicentres and r=0.6810; P=0.0408 cranially). CONCLUSION: Using DTI, differences between acute and chronic stages of spontaneous canine SCI were detected and correlations between T2W and DTI sequences were found in chronic SCI, supporting canine SCI as a useful large animal model.Spinal Cord advance online publication, 1 August 2017; doi:10.1038/sc.2017.83

    Comparison of Preoperative Quantitative Magnetic Resonance Imaging and Clinical Assessment of Deep Pain Perception as Prognostic Tools for Early Recovery of Motor Function in Paraplegic Dogs with Intervertebral Disk Herniations.

    Get PDF
    BACKGROUND: Prognostic tools to predict early postoperative motor function recovery (MFR) after thoracolumbar intervertebral disk herniation (IVDH) in paraplegic dogs represent an opportunity to timely implement novel therapies that could shorten recovery times and diminish permanent neurological dysfunctions. HYPOTHESIS: Fractional anisotropy (FA) values obtained using diffusion tensor imaging have a higher prognostic value than a lesion extension ratio in T2-weighted images (T2W-LER) and clinical assessment of deep pain perception (DPP) for MFR. ANIMALS: Thirty-five paraplegic dogs with diagnosis of acute or subacute thoracolumbar IVDH. METHODS: Prospective, descriptive observational study. At admission, absence or presence of DPP, T2W-LER, and FA values was evaluated. MFR was assessed within 4 weeks after decompressive surgery. Values of T2W-LER and FA of dogs with and without MFR were compared using t-tests. All 3 methods were evaluated for their sensitivity and specificity as a prognostic factor. RESULTS: No differences were found between groups regarding T2W-LER. FA values differed statistically when measured caudally of lesion epicenter being higher in dogs without MFR compared to dogs with MFR (P = .023). Logistic regression analysis revealed significance in FA values measured caudally of the lesion epicenter (P = .033, area under the curve = 0.72). Using a cutoff value of FA = 0.660, the technique had a sensitivity of 80% and a specificity of 55%. Evaluation of DPP had a sensitivity of 73.3% and specificity of 75% (P = .007). CONCLUSIONS AND CLINICAL IMPORTANCE: Evaluation of DPP showed a similar sensitivity and a better specificity predicting early MFR than quantitative magnetic resonance imaging

    Bacteria dispersal by hitchhiking on zooplankton

    Get PDF
    Microorganisms and zooplankton are both important components of aquatic food webs. Although both inhabit the same environment, they are often regarded as separate functional units that are indirectly connected through nutrient cycling and trophic cascade. However, research on pathogenic and nonpathogenic bacteria has shown that direct association with zooplankton has significant influences on the bacteria's physiology and ecology. We used stratified migration columns to study vertical dispersal of hitchhiking bacteria through migrating zooplankton across a density gradient that was otherwise impenetrable for bacteria in both upward and downward directions (conveyor-belt hypothesis). The strength of our experiments is to permit quantitative estimation of transport and release of associated bacteria: vertical migration of Daphnia magna yielded an average dispersal rate of 1.3 × 105·cells·Daphnia−1·migration cycle−1 for the lake bacterium Brevundimonas sp. Bidirectional vertical dispersal by migrating D. magna was also shown for two other bacterial species, albeit at lower rates. The prediction that diurnally migrating zooplankton acquire different attached bacterial communities from hypolimnion and epilimnion between day and night was subsequently confirmed in our field study. In mesotrophic Lake Nehmitz, D. hyalina showed pronounced diel vertical migration along with significant diurnal changes in attached bacterial community composition. These results confirm that hitchhiking on migrating animals can be an important mechanism for rapidly relocating microorganisms, including pathogens, allowing them to access otherwise inaccessible resources

    Microbial methane production in oxygenated water column of an oligotrophic lake

    Get PDF
    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux
    corecore