10 research outputs found

    Adipose Tissue Endothelial Cells From Obese Human Subjects: Differences Among Depots in Angiogenic, Metabolic, and Inflammatory Gene Expression and Cellular Senescence

    Get PDF
    International audienceOBJECTIVE: Regional differences among adipose depots in capacities for fatty acid storage, susceptibility to hypoxia, and inflammation likely contribute to complications of obesity. We defined the properties of endothelial cells (EC) isolated from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) biopsied in parallel from obese subjects. RESEARCH DESIGN AND METHODS: The architecture and properties of the fat tissue capillary network were analyzed using immunohistochemistry and flow cytometry. CD34(+)/CD31(+) EC were isolated by immunoselection/depletion. Expression of chemokines, adhesion molecules, angiogenic factor receptors, as well as lipogenic and senescence-related genes were assayed by real-time PCR. Fat cell size and expression of hypoxia-dependent genes were determined in adipocytes from both fat depots. RESULTS: Hypoxia-related genes were more highly expressed in VAT than SAT adipocytes. VAT adipocytes were smaller than SAT adipocytes. Vascular density and EC abundance were higher in VAT. VAT-EC exhibited a marked angiogenic and inflammatory state with decreased expression of metabolism-related genes, including endothelial lipase, GPIHBP1, and PPAR gamma. VAT-EC had enhanced expression of the cellular senescence markers, IGFBP3 and γ-H2AX, and decreased expression of SIRT1. Exposure to VAT adipocytes caused more EC senescence-associated β-galactosidase activity than SAT adipocytes, an effect reduced in the presence of vascular endothelial growth factor A (VEGFA) neutralizing antibodies. CONCLUSIONS: VAT-EC exhibit a more marked angiogenic and proinflammatory state than SAT-EC. This phenotype may be related to premature EC senescence. VAT-EC may contribute to hypoxia and inflammation in VAT

    TGFbeta Family Members Are Key Mediators in the Induction of Myofibroblast Phenotype of Human Adipose Tissue Progenitor Cells by Macrophages

    Get PDF
    International audienceOBJECTIVE: The present study was undertaken to characterize the remodeling phenotype of human adipose tissue (AT) macrophages (ATM) and to analyze their paracrine effects on AT progenitor cells. RESEARCH DESIGN AND METHODS: The phenotype of ATM, immunoselected from subcutaneous (Sc) AT originating from subjects with wide range of body mass index and from paired biopsies of Sc and omental (Om) AT from obese subjects, was studied by gene expression analysis in the native and activated states. The paracrine effects of ScATM on the phenotype of human ScAT progenitor cells (CD34(+)CD31(-)) were investigated. RESULTS: Two main ATM phenotypes were distinguished based on gene expression profiles. For ScAT-derived ATM, obesity and adipocyte-derived factors favored a pro-fibrotic/remodeling phenotype whereas the OmAT location and hypoxic culture conditions favored a pro-angiogenic phenotype. Treatment of native human ScAT progenitor cells with ScATM-conditioned media induced the appearance of myofibroblast-like cells as shown by expression of both α-SMA and the transcription factor SNAIL, an effect mimicked by TGFβ1 and activinA. Immunohistochemical analyses showed the presence of double positive α-SMA and CD34 cells in the stroma of human ScAT. Moreover, the mRNA levels of SNAIL and SLUG in ScAT progenitor cells were higher in obese compared with lean subjects. CONCLUSIONS: Human ATM exhibit distinct pro-angiogenic and matrix remodeling/fibrotic phenotypes according to the adiposity and the location of AT, that may be related to AT microenvironment including hypoxia and adipokines. Moreover, human ScAT progenitor cells have been identified as target cells for ScATM-derived TGFβ and as a potential source of fibrosis through their induction of myofibroblast-like cells

    Characterization of the equine glycogen debranching enzyme gene (AGL): Genomic and cDNA structure, localization, polymorphism and expression

    No full text
    Glycogen debranching enzyme (AGL) is a multifunctional enzyme acting in the glycogen degradation pathway. In humans, the AGL activity deficiency causes a type III glycogen storage disease (Cori-Forbes disease). One particularity of AGL gene expression lies in the multiple alternative splicing in its 5' region. The AGL gene was localized on ECA5q14-q15. The sequence of the equine cDNA was determined to be 7.5 kb in length with an open reading frame of 4602 bp. The gene is 69 kb long and contains 35 exons. The equine AGL gene has an ubiquitous expression and presents five tissue-dependent cDNA variants arising from alternative splicing of the first exons. The equine skeletal muscle and heart contain four out of six variants previously described in humans and the equine liver express three of these four human variants. We identified a new alternative splicing variant expressed in equine skeletal and heart muscles. All these mRNA variants most probably encode only two different protein isoforms of 1533 and 1377 amino-acids. Four SNPs were detected in the mRNA. The equine in silico promoter sequence reveals a structure similar to those of other mammalian species. The disposition of the transcription factor biding sites does not correlate to the transcription start sites of tissue-specific variants

    Construction of a medium-density horse gene map

    Full text link
    A medium-density map of the horse genome (Equus caballus) was constructed using genes evenly distributed over the human genome. Three hundred and twenty-three exonic primer pairs were used to screen the INRA and the CHORI-241 equine BAC libraries by polymerase chain reaction and by filter hybridization respectively. Two hundred and thirty-seven BACs containing equine gene orthologues, confirmed by sequencing, were isolated. The BACs were localized to horse chromosomes by fluorescent in situ hybridization (FISH). Overall, 165 genes were assigned to the equine genomic map by radiation hybrid (RH) (using an equine RH5000 panel) and/or by FISH mapping. A comparison of localizations of 713 genes mapped on the horse genome and on the human genome revealed 59 homologous seg- ments and 131 conserved segments. Two of these homologies (ECA27/HSA8 and ECA12p/ HSA11p) had not been previously identified. An enhanced resolution of conserved and rearranged chromosomal segments presented in this study provides clarification of chromosome evolution history

    Lobular architecture of human adipose tissue defines the niche and fate of progenitor cells

    No full text
    International audienceHuman adipose tissue (hAT) is constituted of structural units termed lobules, the organization of which remains to be defined. Here we report that lobules are composed of two extracellular matrix compartments, i.e., septa and stroma, delineating niches of CD45−/CD34+/CD31− progenitor subsets characterized by MSCA1 (ALPL) and CD271 (NGFR) expression. MSCA1+ adipogenic subset is enriched in stroma while septa contains mainly MSCA1−/CD271− and MSCA1−/CD271 high progenitors. CD271 marks myofibroblast precursors and NGF ligand activation is a molecular relay of TGFβ-induced myofibroblast conversion. In human subcutaneous (SC) and visceral (VS) AT, the progenitor subset repartition is different, modulated by obesity and in favor of adipocyte and myofibroblast fate, respectively. Lobules exhibit depot-specific architecture with marked fibrous septa containing mesothelial-like progenitor cells in VSAT. Thus, the human AT lobule organization in specific progenitor subset domains defines the fat depot intrinsic capacity to remodel and may contribute to obesity-associated cardiometabolic risks

    Gut Microbiota and Metabolic Diseases: From Pathogenesis to Therapeutic Perspective

    No full text
    corecore