362 research outputs found

    Numerical Investigation of Optimal Hydrodynamic Performance by Changing the Orifice Ratio and Relative Opening of a Land-Fixed Rectangular-based OWC

    Get PDF
    The energy that can be extracted from the ocean is inexhaustible. An oscillating water column (OWC) is a wave energy converter that extracts this energy. A numerical investigation has been conducted by altering relative opening (α) and orifice ratio (τ) to assess the maximal energy of a land-fixed rectangular-based OWC model in a nonlinear wave field. The power of OWC has also been evaluated by the wave steepness (H/L) alteration. The numeric analysis has been imposed to obtain the optimal power using Fluent software in a three-dimensional tank. Validation of the present numeric model’s result correlates with the printed empirical data. The Finite Volume Method (FVM) solves RANS equations, and the relevant waves are generated at the inlet of the numerical tank by the inlet velocity approach. The efficiency (η) increases with relative openings (α) increase. The efficiency (η) decreases with wave steepness (H/L) increase. The η reaches the optimum shown in the study at H/L = 0.02 and τ = 1.03% for entire values of α. The excellent energy of around 71.3% is attained at α =75% and H/L = 0.02. This study is a highly relevant source of information that finds the optimal efficiency of a land-fixed rectangular base OWC and gives prior knowledge of the performance of OWC before the real-life experiment

    Small intestinal mucosal cells in piglets fed with probiotic and zinc: a qualitative and quantitative microanatomical study

    Get PDF
    Background: Probiotics and zinc are commonly used and beneficial in pig production. This work aimed to assess the effects of probiotic and zinc on the mucosal cells of the small intestine in respect to digestive capacity and immunity in pre- and post-weaned piglets.Materials and methods: Eighteen Large White Yorkshire piglets were divided equally into control and treatment groups. The piglets were maintained in standard management conditions and were weaned at 28 days of age. The treatment group of piglets fed a mixture of probiotics orally at 1.25 × 109 CFU/day and zinc at 2000 ppm/day from birth to 10 days of age. At three different age-groups viz. day 20 (pre-weaning) and, day 30 and day 60 (post-weaning), the animals were sacrificed. For histomorphology, the tissue samples were processed and stained with Mayer’s haematoxylin and eosin for routine study, combined periodic acid-Schiff-Alcian blue for mucopolysaccharides and Masson-Hamperl argentaffin technique for argentaffin cells. The stained slides were observed under the microscope. The samples were processed as per the standard procedure for scanning and transmission electron microscopy. The statistical analysis of the data using the appropriate statistical tests was also conducted.Results: The mucosal epithelium of villi and crypts were lined by enterocytes, goblet cells, argentaffin cells, microfold (M-cell) cells, tuft cells and intraepithelial lymphocytes. The multipotent stem cells were located at the crypt base. The length of the enterocyte microvilli was significantly longer (p < 0.05) in the treatment group of piglets. The number of different types of goblet cells and argentaffin cells was more in treated piglets irrespective of segments of intestine and age. The intraepithelial lymphocytes were located in apical, nuclear and basal positions in the lining epithelium of both villus tip and base with their significant increase in the treatment group of piglets. The transmission electron microscopy revealed the frequent occurrence of tuft cells in the lining mucosa of the small intestine in treated piglets.Conclusions: Dietary supplementation of probiotic and zinc induced the number of different mucosal cells of villi and crypts in the small intestine that might suggest the greater absorptive capacity of nutrients and effective immunity in critical pre and post-weaned piglets

    Performance of Indian Manufacturing in the Post Reform Period

    Get PDF
    Many emerging countries in recent decades have relied on a development strategy that focused primarily on promoting the manufacturing sector and the exports of manufactured goods. However, an acceleration of growth of output and employment in manufacturing has eluded India. This is despite the fact that the central focus of the reforms in the 1980s and 1990s was to unshackle the manufacturing sector. Instead it is the services sector which has grown rapidly, contributing about two-third of GDP growth in recent years. This paper discusses the reasons behind the modest performance of the manufacturing sector in India post reforms. It argues that there are many factors that have inhibited the growth of industrial sector in India. One major factor is the rigid and strict labor laws which have affected the industrial performance in a number of ways, by keeping the size of the establishments small, by not encouraging the production of labor intensive goods, by pushing activities to the unorganized sector, and by keeping the Indian industry uncompetitive. Besides the labor laws other factors that are responsible for the modest performance of the manufacturing sector include difficulty in the acquisition of land for industrial use, inadequate financing and infrastructure, and cumbersome business climate. The paper presents arguments and evidence which shows the importance of these factors

    Viral Kinetics Suggests a Reconciliation of the Disparate Observations of the Modulation of Claudin-1 Expression on Cells Exposed to Hepatitis C Virus

    Get PDF
    The tight junction protein claudin-1 (CLDN1) is necessary for hepatitis C virus (HCV) entry into target cells. Recent studies have made disparate observations of the modulation of the expression of CLDN1 on cells following infection by HCV. In one study, the mean CLDN1 expression on cells exposed to HCV declined, whereas in another study HCV infected cells showed increased CLDN1 expression compared to uninfected cells. Consequently, the role of HCV in modulating CLDN1 expression, and hence the frequency of cellular superinfection, remains unclear. Here, we present a possible reconciliation of these disparate observations. We hypothesized that viral kinetics and not necessarily HCV-induced receptor modulation underlies these disparate observations. To test this hypothesis, we constructed a mathematical model of viral kinetics in vitro that mimicked the above experiments. Model predictions provided good fits to the observed evolution of the distribution of CLDN1 expression on cells following exposure to HCV. Cells with higher CLDN1 expression were preferentially infected and outgrown by cells with lower CLDN1 expression, resulting in a decline of the mean CLDN1 expression with time. At the same time, because the susceptibility of cells to infection increased with CLDN1 expression, infected cells tended to have higher CLDN1 expression on average than uninfected cells. Our study thus presents an explanation of the disparate observations of CLDN1 expression following HCV infection and points to the importance of considering viral kinetics in future studies of receptor expression on cells exposed to HCV

    Bacteria establish an aqueous living space in plants crucial for virulence

    Get PDF
    High humidity has a strong influence on the development of numerous diseases affecting the above-ground parts of plants (the phyllosphere) in crop fields and natural ecosystems, but the molecular basis of this humidity effect is not understood. Previous studies have emphasized immune suppression as a key step in bacterial pathogenesis. Here we show that humidity-dependent, pathogen-driven establishment of an aqueous intercellular space (apoplast) is another important step in bacterial infection of the phyllosphere. Bacterial effectors, such as Pseudomonas syringae HopM1, induce establishment of the aqueous apoplast and are sufficient to transform non-pathogenic P. syringae strains into virulent pathogens in immunodeficient Arabidopsis thaliana under high humidity. Arabidopsis quadruple mutants simultaneously defective in a host target (AtMIN7) of HopM1 and in pattern-triggered immunity could not only be used to reconstitute the basic features of bacterial infection, but also exhibited humidity-dependent dyshomeostasis of the endophytic commensal bacterial community in the phyllosphere. These results highlight a new conceptual framework for understanding diverse phyllosphere–bacterial interactions

    Ribavirin-Induced Anemia in Hepatitis C Virus Patients Undergoing Combination Therapy

    Get PDF
    The current standard of care for hepatitis C virus (HCV) infection – combination therapy with pegylated interferon and ribavirin – elicits sustained responses in only ∼50% of the patients treated. No alternatives exist for patients who do not respond to combination therapy. Addition of ribavirin substantially improves response rates to interferon and lowers relapse rates following the cessation of therapy, suggesting that increasing ribavirin exposure may further improve treatment response. A key limitation, however, is the toxic side-effect of ribavirin, hemolytic anemia, which often necessitates a reduction of ribavirin dosage and compromises treatment response. Maximizing treatment response thus requires striking a balance between the antiviral and hemolytic activities of ribavirin. Current models of viral kinetics describe the enhancement of treatment response due to ribavirin. Ribavirin-induced anemia, however, remains poorly understood and precludes rational optimization of combination therapy. Here, we develop a new mathematical model of the population dynamics of erythrocytes that quantitatively describes ribavirin-induced anemia in HCV patients. Based on the assumption that ribavirin accumulation decreases erythrocyte lifespan in a dose-dependent manner, model predictions capture several independent experimental observations of the accumulation of ribavirin in erythrocytes and the resulting decline of hemoglobin in HCV patients undergoing combination therapy, estimate the reduced erythrocyte lifespan during therapy, and describe inter-patient variations in the severity of ribavirin-induced anemia. Further, model predictions estimate the threshold ribavirin exposure beyond which anemia becomes intolerable and suggest guidelines for the usage of growth hormones, such as erythropoietin, that stimulate erythrocyte production and avert the reduction of ribavirin dosage, thereby improving treatment response. Our model thus facilitates, in conjunction with models of viral kinetics, the rational identification of treatment protocols that maximize treatment response while curtailing side effects

    Defence Responses of Arabidopsis thaliana to Infection by Pseudomonas syringae Are Regulated by the Circadian Clock

    Get PDF
    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime

    The Mechanism for RNA Recognition by ANTAR Regulators of Gene Expression

    Get PDF
    ANTAR proteins are widespread bacterial regulatory proteins that have RNA–binding output domains and utilize antitermination to control gene expression at the post-initiation level. An ANTAR protein, EutV, regulates the ethanolamine-utilization genes (eut) in Enterococcus faecalis. Using this system, we present genetic and biochemical evidence of a general mechanism of antitermination used by ANTARs, including details of the antiterminator structure. The novel antiterminator structure consists of two small hairpins with highly conserved terminal loop residues, both features being essential for successful antitermination. The ANTAR protein dimerizes and associates with its substrate RNA in response to signal-induced phosphorylation. Furthermore, bioinformatic searches using this conserved antiterminator motif identified many new ANTAR target RNAs in phylogenetically diverse bacterial species, some comprising complex regulons. Despite the unrelatedness of the species in which they are found, the majority of the ANTAR–associated genes are thematically related to nitrogen management. These data suggest that the central tenets for gene regulation by ANTAR antitermination occur widely in nature to specifically control nitrogen metabolism
    corecore