1,741 research outputs found

    Mahlon Pitney and Caroline Pitney to Dalrymple Family, December 29, 1820

    Get PDF
    Legal Indenture from Mahlon Pitney, Samuel P. Dalrymple, John Dalrymple, Phebe Ann Dalrymple, and Frederick B. Dalrymple to Caroline Pitney for money due for Grays Hollow lot. People Included: Samuel Pitney, James Pitney, Diziah Dalrymplehttps://digitalcommons.kean.edu/lhc_1820s/1140/thumbnail.jp

    Quality control of the sheep bacterial artificial chromosome library, CHORI-243

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sheep CHORI-243 bacterial artificial chromosome (BAC) library is being used in the construction of the virtual sheep genome, the sequencing and construction of the actual sheep genome assembly and as a source of DNA for regions of the genome of biological interest. The objective of our study is to assess the integrity of the clones and plates which make up the CHORI-243 library using the virtual sheep genome.</p> <p>Findings</p> <p>A series of analyses were undertaken based on the mapping the sheep BAC-end sequences (BESs) to the virtual sheep genome. Overall, very few plate specific biases were identified, with only three of the 528 plates in the library significantly affected. The analysis of the number of tail-to-tail (concordant) BACs on the plates identified a number of plates with lower than average numbers of such BACs. For plates 198 and 213 a partial swap of the BESs determined with one of the two primers appear to have occurred. A third plate, 341, also with a significant deficit in tail-to-tail BACs, appeared to contain a substantial number of sequences determined from contaminating eubacterial 16 S rRNA DNA. Additionally a small number of eubacterial 16 S rRNA DNA sequences were present on two other plates, 111 and 338, in the library.</p> <p>Conclusions</p> <p>The comparative genomic approach can be used to assess BAC library integrity in the absence of fingerprinting. The sequences of the sheep CHORI-243 library BACs have high integrity, especially with the corrections detailed above. The library represents a high quality resource for use by the sheep genomics community.</p

    Radiation-induced nucleic acid synthesis in L cells under energy deprivation

    Get PDF
    Radiation induced nucleic acid synthesis in energy deprived L cell

    Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tissue specificity of gene expression has been linked to a number of significant outcomes including level of expression, and differential rates of polymorphism, evolution and disease association. Recent studies have also shown the importance of exploring differential gene connectivity and sequence conservation in the identification of disease-associated genes. However, no study relates gene interactions with tissue specificity and disease association.</p> <p>Methods</p> <p>We adopted an <it>a priori </it>approach making as few assumptions as possible to analyse the interplay among gene-gene interactions with tissue specificity and its subsequent likelihood of association with disease. We mined three large datasets comprising expression data drawn from massively parallel signature sequencing across 32 tissues, describing a set of 55,606 true positive interactions for 7,197 genes, and microarray expression results generated during the profiling of systemic inflammation, from which 126,543 interactions among 7,090 genes were reported.</p> <p>Results</p> <p>Amongst the myriad of complex relationships identified between expression, disease, connectivity and tissue specificity, some interesting patterns emerged. These include elevated rates of expression and network connectivity in housekeeping and disease-associated tissue-specific genes. We found that disease-associated genes are more likely to show tissue specific expression and most frequently interact with other disease genes. Using the thresholds defined in these observations, we develop a guilt-by-association algorithm and discover a group of 112 non-disease annotated genes that predominantly interact with disease-associated genes, impacting on disease outcomes.</p> <p>Conclusion</p> <p>We conclude that parameters such as tissue specificity and network connectivity can be used in combination to identify a group of genes, not previously confirmed as disease causing, that are involved in interactions with disease causing genes. Our guilt-by-association algorithm should be useful for the discovery of additional modifiers of genetic diseases, and more generally, for the ability to associate genes of unknown function to clusters of genes with defined functions allowing for novel biological inference that can be subsequently validated.</p

    Using paired-end sequences to optimise parameters for alignment of sequence reads against related genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The advent of cheap high through-put sequencing methods has facilitated low coverage skims of a large number of organisms. To maximise the utility of the sequences, assembly into contigs and then ordering of those contigs is required. Whilst sequences can be assembled into contigs <it>de novo</it>, using assembled genomes of closely related organisms as a framework can considerably aid the process. However, the preferred search programs and parameters that will optimise the sensitivity and specificity of the alignments between the sequence reads and the framework genome(s) are not necessarily obvious. Here we demonstrate a process that uses paired-end sequence reads to choose an optimal program and alignment parameters.</p> <p>Results</p> <p>Unlike two single fragment reads, in paired-end sequence reads, such as BAC-end sequences, the two sequences in the pair have a known positional relationship in the original genome. This provides an additional level of confidence over match scores and e-values in the accuracy of the positional assignment of the reads in the comparative genome. Three commonly used sequence alignment programs: MegaBLAST, Blastz and PatternHunter were used to align a set of ovine BAC-end sequences against the equine genome assembly. A range of different search parameters, with a particular focus on contiguous and discontiguous seeds, were used for each program. The number of reads with a hit and the number of read pairs with hits for the two end sequences in the tail-to-tail paired-end configuration were plotted relative to the theoretical maximum expected curve. Of the programs tested, MegaBLAST with short contiguous seed lengths (word size 8-11) performed best in this particular task. In addition the data also provides estimates of the false positive and false negative rates, which can be used to determine the appropriate values of additional parameters, such as score cut-off, to balance sensitivity and specificity. To determine whether the approach also worked for the alignment of shorter reads, the first 240 bases of each BAC end sequence were also aligned to the equine genome. Again, contiguous MegaBLAST performed the best in optimising the sensitivity and specificity with which sheep BAC end reads map to the equine and bovine genomes.</p> <p>Conclusions</p> <p>Paired-end reads, such as BAC-end sequences, provide an efficient mechanism to optimise sequence alignment parameters, for example for comparative genome assemblies, by providing an objective standard to evaluate performance.</p

    Characterising work-based learning as a triadic learning endeavour

    Get PDF
    With work-based learning (WBL) forming an increasingly prevalent dimension of modern higher education practice, conceptual models of the pedagogies underpinning WBL are increasingly emerging. There is broadening recognition of the need to capture and represent the values and presuppositions underlying WBL in order to support facilitators and learners engaged in WBL for the first time. Accordingly, the current study proposes a new characterisation of WB higher education which can helpfully inform the design and delivery of WBL curricula, schemes of work and teaching and learning strategies. Informed by the authors' extensive facilitation of WBL programmes for such diverse fields of professional practice as dance teaching, event management, security and the military, the model represents WBL as a triadic learning endeavour in which student, work-based facilitator and university tutor are engaged in a mode of learning which is best conceived as ‘academy-aligned' rather than ‘academy-based', and in which the signature pedagogic principle is one of ‘responsive facilitation'. The application of the model in a number of programmes is demonstrated and some recommendations for WB practice outlined

    Characterisation and application of a bovine U6 promoter for expression of short hairpin RNAs

    Get PDF
    BackgroundThe use of small interfering RNA (siRNA) molecules in animals to achieve double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful method of sequence-specific gene knockdown. As DNA-based expression of short hairpin RNA (shRNA) for RNAi may offer some advantages over chemical and in vitro synthesised siRNA, a number of vectors for expression of shRNA have been developed. These often feature polymerase III (pol. III) promoters of either mouse or human origin.ResultsTo develop a shRNA expression vector specifically for bovine RNAi applications, we identified and characterised a novel bovine U6 small nuclear RNA (snRNA) promoter from bovine sequence data. This promoter is the putative bovine homologue of the human U6-8 snRNA promoter, and features a number of functional sequence elements that are characteristic of these types of pol. III promoters. A PCR based cloning strategy was used to incorporate this promoter sequence into plasmid vectors along with shRNA sequences for RNAi. The promoter was then used to express shRNAs, which resulted in the efficient knockdown of an exogenous reporter gene and an endogenous bovine gene.ConclusionWe have mined data from the bovine genome sequencing project to identify a functional bovine U6 promoter and used the promoter sequence to construct a shRNA expression vector. The use of this native bovine promoter in shRNA expression is an important component of our future development of RNAi therapeutic and transgenic applications in bovine species.<br /
    • …
    corecore