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1. Introduction 

Recent years have seen an explosion in the sequencing of genomes, including those of 
ruminants. A number of assemblies of the sequence of the bovine genome are now available 
(Elsik, et al., 2009; Zimin, et al., 2009). Although the sheep genome sequence is not such a 
high priority, the International Sheep Genomics Consortium (ISGC_website) has a long term 
strategy to develop a number of tools for the application of genomics in sheep research and 
breeding (Archibald, et al., 2010). We have demonstrated recently how comparative 
genomics and Bacterial Artificial Chromosome (BAC)-libraries can be used to construct 
detailed virtual genomes as a framework for genome assemblies of related species 
(Dalrymple, et al., 2007). As new and improved genome assemblies of the genomes 
contributing to an initial virtual genome assembly are produced, the virtual genomes will 
need to be regularly updated to incorporate the latest available information. In the original 
analysis, three genomes (bovine, dog and human) with various levels of coverage and stages 
of assembly were used (Dalrymple, et al., 2007). With the availability of increasing numbers 
of assemblies, the benefit of using more than three genomes, or the most appropriate 
evolutionary distances of the genomes, is not immediately clear. Here we describe the 
construction of a modified version of the bovine Btau3.1 assembly using cattle and sheep 
BACs and the use of this assembly in the construction of an updated virtual sheep genome, 
combining information from the original sheep virtual genome (vsg 1.2) and the horse 
(Wade, et al., 2009) and dog (Lindblad-Toh, et al., 2005) genomes. The impact of inclusion of 
additional genome sequences is analysed. The approach described here for sheep is an 
example of an approach which can be applied more broadly to genomes of any source, for 
example for the fish species, tilapia (Soler, et al., 2010) and catfish (Liu, et al., 2009). Indeed, 
the same principles also apply to the detection of differences between different individuals 
of the same species. 
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2. Materials and methods 

2.1 Data sources and sequence search parameters 

All genome sequences, except Btau3.#x versions, were downloaded from the UCSC 
comparative genomics website (UCSC; Fujita, et al., 2011). The full set of BAC-end sequences 
(BESs) from the CHORI-243 sheep BAC library, deposited in GenBank with the following 
accession numbers; CL632218-CL639051, CZ920079-CZ926973 and DU169919-DU532729 
(Dalrymple, et al., 2007), were filtered to remove duplicate sequences and to identify the set 
of high confidence BACs (Ratnakumar, et al., 2010a). The filtered set of sheep BAC-end 
sequences were aligned to the lower case masked versions of the bovine genome assembly 
(Btau3.1) and the revised bovine genome assembly (Btau3.5x) using MegaBLASTn with the 
following optimised parameters: -r 1 -q -1 -X 40 -W 8, as previously described (Ratnakumar, 
et al., 2010b). The filtered set of sheep BESs were aligned to the lower case masked versions of 
the dog genome sequence assembly (canFam2), the horse genome sequence assembly 
(equCab1) and to the human genome sequence assembly (hg17) using BLASTn with the 
following parameters: -W 7 -r 17 -q -21 -G 29 -E 22 -X 240 -e 1 -f 280 -F m -U T and -z 
3076781887 (human) and -z 2531657226 (dog), as previously described (Dalrymple, et al., 
2007). No cut offs were applied to the BLAST output except that for each sheep BAC-end 
sequence only the best hit from each of the genomes was used for the next steps. If two BESs 
hits to the same genome assembly with equal scores were obtained the hit on the same 
chromosome as the best hit for the BES determined from the other end of the BAC was 
retained. If more than two hits with equal scores were obtained the BES hit was discarded. 
The BESs from the CHORI-240 cattle BAC library, GenBank accession numbers; BZ830806-
BZ891831, BZ896446-BZ956676, CC447354-CC447937, CC466118-CC470858, CC470880-
CC596504, CC761663-CC775995, CG917936-CG918393, CG976420-CG992944, CL603252-
CL610093, CW848133-CW848163, CZ012846-CZ027312 (Snelling, et al., 2007), were aligned 
to the cattle and virtual sheep genome sequences using BLAT (Kent, 2002).  
Bovine genome assembly Btau3.1 sequence contigs were aligned to the human, dog and 
horse genomes using MegaBLASTn as described above. 

2.2 Genome coordinate conversion 

The coordinates from the mapping of the sheep BESs to the dog and human genomes were 
converted to the framework of the bovine genome assembly Btau3.1 using the LiftOver 
utility (LiftOver; Fujita, et al., 2011) and the canFam2 to Btau3.1 and hg17 to Btau3.1 
coordinate conversion chain files respectively, also downloaded from UCSC genome 
bioinformatics site (UCSC; Fujita, et al., 2011). If the initial application of LiftOver was not 
successful for a region of the genome, regions of 100 bases either side of the BAC-end 
sequence were taken and positioned using LiftOver (pseudoliftOver). If this was again 
unsuccessful the process was repeated in steps of 100 bases until a successful application of 
the LiftOver utility for a region was achieved, or a distance of 10kb was reached (Dalrymple, 
et al., 2007).  
Coordinate conversion (chain) files able to be read by the LiftOver utility to convert bovine 
genome assembly Btau3.1 coordinates to bovine genome assembly Btau3.#x version 
coordinates were built based on the revised order of Btau3.1 contigs and scaffolds in 
Btau3.#x version. Similarly a coordinate conversion file to convert Btau3.5x coordinates to 
virtual sheep genome assembly coordinates was built based on the order of Btau3.5x 
scaffolds in the virtual sheep genome. 
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2.3 Assigning BACs to groups and building BAC contigs 

BACs were assigned to the groups; “tail-to-tail”, “tail-to-head” etc. on the basis of the 
relative orientations of the two BESs from each BAC on the relevant genome assembly and 
the distance apart of the BESs. “Outsize” BACs were those with the two BESs mapped to the 
same chromosome in the relevant genome assembly and less than 10 kb, or more than 200 
kb, apart. Data processing was undertaken using a series of Perl scripts. BACs with both 
BESs mapped to the genome, but mapped to two different chromosomes, were assigned to 
the “breaks” group. BACs with only one BES mapped to the genome were assigned to the 
“unpaired” group. 
BAC-comparative genomic contigs (BAC-CGCs) were constructed for the BACs from each 
species mapped to each genome assembly using Perl scripts to process the data (Dalrymple, 
et al., 2007). Starting from the beginning of each chromosome the first BAC that overlapped 
with a second BAC was identified, the BAC-CGC was extended until no further overlapping 
BACs were identified. This process was repeated along the chromosome until the last BAC 
mapped on the chromosome was reached. The process was repeated for each chromosome 
in the genome assembly. 

2.4 Construction of Btau3.5x 

Using Perl scripts and the data set of the mapping of the bovine BESs to the scaffolds of the 
Btau3.1 genome assembly an initial minimization of the number of non-tail-to-tail BACs was 
undertaken. The scripts started with the first scaffold on chromosome 1 of the assembly and by 
testing the number of BAC links between this scaffold and all other scaffolds in the assembly 
identified the most likely adjacent scaffold and the orientation of the scaffold based on 
maximising the number of tail-to-tail BACs. Two or more linking tail-to-tail BACs without 
overlapping BES mapping coordinates on both scaffolds were required to continue the chain. 
Only high confidence bovine BACs (Ratnakumar, et al., 2009) were used in the assembly. 
Adjacent scaffolds assigned to the same chromosome in the Btau3.1 assembly were preferred 
over a more highly linked scaffold assigned to another chromosome, if the preferred scaffold 
on the original chromosome was itself linked to an adjacent scaffold on the original 
chromosome. If no scaffold assigned to the same chromosome as the rest of the chain was 
linked into the chain by BACs, or the less strongly linked scaffold from the same chromosome 
terminated the chain, the most highly linked scaffold from another chromosome was 
incorporated. If the newly added scaffold was linked back to the original chromosome at the 
next step of scaffold incorporation it was retained in the chain, otherwise the chain was 
terminated and the chromosome changing scaffold was also removed from the scaffold chain. 
For each scaffold in the chain BAC-links from both ends of the scaffold were assessed to 
enable to inclusion of scaffolds preceding the initiating scaffold, or located between two 
scaffolds in a chain, but which were only linked to an adjacent following scaffold. The 
scaffold chain building process was continued until it was terminated with a scaffold not 
linked by two or more BACs to another scaffold. The penultimate scaffold in the chain was 
then tested for BAC links to a second scaffold and incorporated if it met the criteria 
described above. The chain building process was then continued. If no second linked 
scaffold could be identified the scaffold chain building was terminated. The next 
unincorporated scaffold from the same chromosome of the Btau3.1 assembly was then used 
to initiate the next scaffold chain. When all scaffolds from the first chromosome had been 
tested the first scaffold from the next chromosome was used and the process repeated until 
all scaffolds assigned to a chromosome of the Btau3.1 assembly had been tested. 
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Once the scaffold chain assembly had been completed the scaffolds not assigned to 
chromosomes in the Btau3.1 assembly (the UnChr) were then linked into the scaffold chains 
in a similar, but separate process. The resulting scaffold chains were then ordered and 
oriented using the consensus of the mapping of the order of the BACs in the physical bovine 
BAC map (Snelling, et al., 2007) to the BACs in the bovine scaffold chains. The initial data 
set Btau3.1x was then displayed as a browseable genome using Gbrowse (Stein, et al., 2002) 
to allow the integrity of the assembly of the scaffolds to be visually assessed. Genome 
contigs, scaffolds, bovine BAC mapping positions were displayed as separate groups. 
Clusters on non-congruent BACs (i.e. not tail-to-tail) identified regions with remaining 
assembly problems. 
Using Perl scripts and the data set of the mapping of the sheep BESs to the Btau3.1 genome 
assembly, including BES mapping data integrated onto the Btau3.1 assembly from the horse, 
dog and vsg1.2 assemblies sheep BACs were assigned to tail-to-tail etc. groups and 
displayed on the Btau3.1x genome browser in a series of tracks. Positions of the BESs 
mapped to the separate genomes were integrated on Btau3.1 as previously described 
(Dalrymple, et al., 2007). 
The mappings of the bovine genome assembly Btau3.1 sequence contigs to the human, dog 
and horse genomes were displayed as separate tracks on the Btau3.1x genome browser using 
the UCSC chromosome colour scheme (Fujita, et al., 2011) to identify the chromosome of best 
match in the relevant species. Asymmetric symbols were used to represent the orientation of 
the mapping of the contigs to the human, dog and horse genomes relative to the bovine 
genome. The chromosomal coordinates of the mapping in the non-bovine genome were also 
readily accessible to the users of the browser using mouse-over and mouse-click display boxes. 
This information was used in the manual refinement of the assembly, in particular in the 
definition of scaffold split points for the insertion of other scaffolds and/or the inversion of 
small numbers of adjacent contigs within a scaffold, where extensive use was made of 
comparative genomics information at the level of the sequence contigs. 
Subsequently four major rounds of revision and refinement of the bovine genome assembly 
were undertaken manually and decisions on the chromosomal assignment, order of 
scaffolds and orientation of scaffolds and of sequence contigs were made based on the cattle 
and sheep BAC mapping and the comparative genomics. Generally in cases of ambiguity 
parsimony was applied. For the construction of each new version of the assembly changes 
were recorded in an Excel spreadsheet and Perl scripts were used to convert the Excel 
spreadsheet into a genome assembly agp file (AGP_file_specification). The agp file was used 
to generate the sequence of the genome assembly, the coordinate conversion chain file (for 
use by the LiftOver utility) and the contig and scaffold tracks for the genome browser 
version for the new assembly. For each successive version of the revised assembly of the 
bovine genome the manual revision was undertaken interactively using the tracks on the 
genome browser to make decisions. 

2.5 Construction of the virtual sheep genome vsg2.0 

To generate the virtual sheep genome assembly the mid point between each pair of BAC-
CGCs built using sheep BACs on the bovine Btau3.5x genome assembly was identified. If 
the mid point was located in a gene (NCBI human RefSeq mRNAs (NCBI_RefSeq) were 
used to define the extent of a gene) the position closest to the midpoint and not in a gene 
was identified. The flanking BAC-CGCs were then extended to this point, or in the case of 
the first and last BAC-CGCs on a chromosome to the start or end coordinate of the 
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chromosome. Thus all nucleotides in the bovine genome sequence were included in a block 
and therefore the virtual sheep genome sequence is exactly the same length as the bovine 
Btau3.5x genome sequence. 
The order and orientation of the bovine genome assembly Btau3.5x-based sheep BAC-CGCs 
in the vsg2.0 was determined on the location and organisation of the sheep linkage map 
markers (Maddox, et al., 2001) mapped to the Btau3.1 genome and converted to the Btau3.5x 
assembly using the Btau3.1 to Btau3.5x coordinate conversion chain file and the LiftOver 
utility. Using Perl scripts the agp file (AGP_file_specification) was built and used to 
generate the sequence of the virtual sheep genome assembly, the coordinate conversion 
chain file (for use by the LiftOver utility), and the contig and scaffold tracks for the virtual 
sheep genome browser (VSG). 
Using the LiftOver utility and the Btau3.5x to virtual sheep genome coordinate conversion 
chain file, the BES and BAC-CGC mapping coordinates, and any other features mapped to 
the Btau3.5x bovine genome, were converted to the virtual sheep genome coordinates. 
Features were also transferred from the Btau3.1 genome assembly by first converting to 
Btau3.5x coordinates using the Btau3.1 to Btau3.5x coordinate conversion file and the 
LiftOver utility and then converting from Btau3.5x to vsg2.0 coordinates. Other features 
were mapped directly onto the virtual sheep genome using sequence alignment programs 
such as BLAST and BLAT with the vsg2.0 DNA sequence. 

3. Results and discussion 

3.1 Identification of problems with the Btau3.1 assembly of the bovine genome 

The cow is the most closely related organism to sheep for which a genome assembly is 
available. When this project was commenced, an early draft of the bovine genome assembly 
Btau3.1 (Elsik, et al., 2009) was in the public domain. Since the sheep genome assembly 
would be built comparatively on the bovine genome, and sheep sequence contigs from the 
low coverage six animals at approximately 0.5 fold coverage each, were expected to be very 
small, the accuracy of the bovine genome assembly would determine the accuracy of the 
sheep assembly at all levels above that of the individual sequence contigs. 
To assess the validity of this strategy the sheep BESs from the CHORI-243 library were 
mapped to the Btau3.1 genome assembly to identify the extent of segments of conserved 
synteny between the two genomes. The reader should keep in mind that the only BACs 
counted as being in the same organisation in the comparison genome as in the source 
genome (i. e. congruent) are the tail-to-tail BACs less than 200kb in length. Unexpectedly 
large numbers of sheep BACs, more than 17% of the BACs with both ends mapped, had 
both BESs positioned on the bovine Btau3.1 genome assembly within 200kb of each other, 
but not in the expected tail-to-tail organisation, i. e. many BACs had their two BESs 
mapped in the tail-to-head and head-to-head organisations (Table 1). In addition, large 
numbers of BACs had both BESs positioned on the same chromosome, but more than 
200kb apart, the outsize groups (Table 1). The average insert size of the BACs in the sheep 
BAC library is 184kb (Dalrymple, et al., 2007). 
Such a result would normally suggest a substantial number of intra-chromosomal 
rearrangements between the sheep and cattle genomes. However, almost as many, more 
than 14%, of bovine BACs were also not positioned as tail-to-tail BACs on the bovine 
Btau3.1 genome assembly (Table 1). The organisation of sheep BACs at the locations of these 
apparent rearrangements between the two genomes was compared with the organisation of 
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bovine BACs at the same locations in the genomes. Frequently clusters of tail-to-head sheep 
BACs overlapped with clusters of tail-to-head bovine BACs (Fig 1), suggesting that many 
such occurrences were in fact due to an incorrect assembly of the bovine genome, not true 
differences in the structures of the two genomes themselves. However, many clusters of tail-
to-head sheep BACs that did not overlap with tail-to-head bovine BACs were also observed 
(Fig 1). These BACs probably represent rearrangements in the sheep genome relative to the 
bovine genome. 
 

 

Fig. 1. Segment of chromosome one of the bovine Btau3.1 genome assembly showing the 
positions and orientations of sheep and cattle BACs. BCM genome assembly contigs are 
coloured based on the human chromosome to which they have the highest scoring match. 
The circles identify regions of likely inversion in the bovine and/or sheep genomes relative 
to the Btau3.1 genome assembly. 

www.intechopen.com



Using Bacterial Artificial Chromosomes  
to Refine Genome Assemblies and to Build Virtual Genomes 

 

379 

Genome Assembly Btau3.1 Btau3.1 Btau3.5x vsg2.0 vsg1.2 

BAC origin cattle sheep cattle sheep sheep 

tail-to-tail (%) 86.7% 82.7% 95.63% 94.0% 89.6% 

tail-to-tail outsize  2.0% 2.6% 0.4% 0.8% 1.7% 

tail-to-head  3.5% 4.4% 2.6% 2.1% 2.6% 

tail-to-head outsize  5.2% 7.1% 0.9% 2.1% 4.4% 

head-to-head  0.4% 0.4% 0.4% 0.2% 0.3% 

head-to-head-outsize  2.1% 2.8% 0.1% 0.6% 1.4% 

tail-to-tail (number) 67,352 47,818 82,765 95,757 84,624 

breaks 13,192 19,151 27,829 

unpaired 79,172 50,142 52,663 

Table 1. Mapping of cattle and sheep BACs to assemblies of the cattle and virtual sheep 
genomes.  

3.2 Using cattle and sheep BACs to reorganise the Btau3.1 assembly of the bovine 
genome 

The first step in the generation of the virtual sheep genome was therefore to construct the 
best approximation to the correct order of the bovine sequence contigs and scaffolds in the 
bovine genome using the bovine and sheep BACs and comparative genomics. Initially, the 
scaffolds in the bovine genome assembly (Btau3.1) were kept intact and scaffolds were 
reordered and reoriented within bovine chromosomes to minimize the number of both cattle 
and sheep BACs that were not in the tail-to-tail organisation. Then scaffolds apparently 
assigned to the wrong chromosomes on the basis of the BAC-based links to other scaffolds 
in the assembly were moved, including being inserted into gaps in other scaffolds guided by 
the mapping of the BESs. Generally these moves were also supported by the mapping of the 
sequence contigs to the human, dog and horse genomes (Fig. 2). In addition, scaffolds not 
assigned to chromosomes in Btau3.1 were included in the assembly where BACs provided 
unambiguous links. Finally, reordering and reorienting of contigs within the new set of 
ordered and reoriented scaffolds was undertaken.  
Given the size of the BACs and the variation in the length of the genomic DNA contained 
within the BACs the correct position to insert many segments of the bovine assembly was 
ambiguous based solely on the BAC-end data. Throughout this process, which was mainly 
undertaken manually, the alignment of the bovine genome assembly contigs to the human, 
dog and horse genome assemblies was used in making the final decision about where 
exactly to insert or break scaffolds. In other words, a breakpoint between sequence contigs 
in an assembly scaffold was chosen that was consistent with the cattle and sheep BES data 
and the organisation of the human, dog and horse genomes (Fig. 2). Where conflicts 
between the comparative genome assemblies occurred two out of three consistent 
organisations were required. However, the integrity of sequence contigs was maintained 
throughout the process, although evidence for chimeric sequence contigs was also identified 
during the course of the analysis (data not shown).  
To avoid ovinising the bovine genome at least one bovine BAC was required to support all 
reorganisations, except reordering and reorienting scaffolds within chromosomes in cases 
where the bovine BAC fingerprint map (Snelling, et al., 2007) also supported the  
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Fig. 2. Segment of chromosome one of the bovine Btau3.5x genome assembly showing the 
positions and orientations of sheep and cattle BACs. BCM genome assembly contigs are 
coloured and orientated based on the relevant species chromosome to which they have the 
highest scoring match The UCSC chromosome colour scheme was used (Fujita, et al., 2011). 

reorganisation. This process was undertaken reiteratively to resolve any errors introduced 
or new links identified as the chromosome structures approached the most likely structure 
of the bovine genome. This revised assembly of the bovine genome based on Btau3.1 was 
named Btau.3.5x.  
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In Btau3.5x the number of bovine assembly scaffolds was reduced from 3053 scaffolds 

assigned to chromosomes in Btau3.1 to 537 super-scaffolds linked by the cattle and sheep 

BACs. Of the chromosomally assigned scaffolds in Btau3.1, 974 scaffolds were inverted, and 

683 scaffolds were split into 1720 pieces, of which 710 were inverted. 14 scaffolds were 

moved to a different chromosome and 2192 scaffolds previously not assigned to 

chromosomes were incorporated into the assembly. 104 of these scaffolds were split into 233 

pieces. Coverage of the genome with scaffolds assigned to chromosomes increased from 2.4 

Gb to 2.77 Gb. Even after this process it is likely that there remained a number of segments 

of the bovine genome assembly which may not have been correctly assembled. 

 

chromosome scaffold orientation integrity 

1 BTA1.1  split 

1 BTAUn.418 inv  

1 BTAUn.728 inv  

1 BTA1.2   

1 BTA1.3   

1 BTA1.4   

1 BTAUn.1364 inv  

1 BTAUn.208   

1 BTA1.6  split 

1 BTAUn.2125 inv  

1 BTA1.6  split 

1 BTAUn.1381   

1 BTA1.5  split 

1 BTAUn.1438 inv   

1 BTA1.5  split 

1 BTA1.7  split 

1 BTAUn.3041   

1 BTAUn.5341 inv  

1 BTA1.7  split 

1 BTA1.8   

Table 2. The first twenty scaffolds of the bovine Btau3.5x assembly, scaffolds numbered 

BTA1.* were assigned in numerical order to chromosome 1 of the bovine genome assembly 

Btau3.1 build. Scaffolds numbered BTAUn.* were not assigned to a chromosome in the 

bovine Btau3.1 build. “inv” indicates scaffolds inverted in the Btau3.5x genome build 

relative to the Btau3.1 build, and “split” indicates scaffolds split in the Btau3.5x build 

relative to the Btau3.1 build. 
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3.3 Integration of the positions of sheep BESs on the Btau3.5x, dog, horse and vsg1.2 

genome assemblies 

We then used the virtual genome strategy (Dalrymple, et al., 2007), integrating the separate 

mapping of the sheep BESs to the original virtual sheep genome (v1.2), the dog and the 

horse genome assemblies, to maximise the positioning of sheep BESs on Btau.3.5x. There 

was little change in the human genome assembly over the course of the work and mapping 

of the sheep BACs to the human genome was captured by using the virtual sheep genome 

v1.2. Thus the virtual sheep genome version 2 was build on top of v1.2, rather than being a 

completely de novo version. This approach, which uses much lower specificity BLAST 

parameters, increased the number of sheep BACs able to be positioned on the bovine 

genome substantially, from 47,818 (in the initial alignments) to 95,757 in the virtual sheep 

genome, effectively doubling the coverage of the genome (Table 1). The number of sheep 

BACs able to be positioned in the tail-to-tail organisation in a genome is a complex function 

of the sequence coverage, assembly stage and evolutionary distance from the bovine 

genome. The greater distance of the dog genome appears to be partially compensated for by 

the more advanced state of the assembly used in this analysis. Very similar numbers of 

BACs were mapped in the tail-to-tail organisation to the two genomes (Table 3) with similar 

numbers of unique BACs (Table 4).  

 

 bovine horse dog vsg1.2 

bovine 77,320    

horse 49,225 60,971   

dog 46,355 47,142 57,192  

vsg1.2 62,889 56,636 54,503 84,624 

Table 3. Tail-to-tail BACs within each dataset generated by independently mapping the 

sheep BESs to each genome and in the intersections between each of the datasets. 

 

genome including vsg1.2 excluding vsg1.2 

bovine 10,550 20,171

horse 701 3,035

dog 211 2,063

vsg1.2 9,204 not applicable

Table 4. Tail-to-tail BACs unique to each dataset. 

The high coverage and quality of the human genome assembly and the use of the 

integration strategy presumably contributed to the large number of unique BACs in the tail-

to-tail organisation present in vsg1.2 (Tables 3 and 4). Over and above the newer assembly 

of the bovine genome the inclusion of the mapping of the sheep BACs to the horse genome 

assembly has the biggest impact on the number of BACs assigned and on the number of 

BAC contigs, where fewer is better (Table 5). This is not surprising since, of the genomes 

used, the horse is the most closely related species to the two ruminants. 

Adding the horse mapping of the sheep BESs positions to the bovine mapping of the sheep 
BESs positions increased the number of BACs mapped by 13,940, mainly by generating 
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BACs with one end directly mapped to the bovine genome and other end mapped to the 
bovine genome via the horse genome (Table 6). Subsequent addition of the BESs mapped via 
the dog genome added many fewer BACs than adding the BESs mapped via the horse 
genome (Table 6). The subsequent addition of the human genome data, incorporated in the 
vsg1.2, added slightly more BACs than the addition of the dog genome (Table 4). Thus 
including the dog genome had only a small impact on the improvement in the coverage of 
the virtual sheep genome whereas the more distant, but the better assembled/higher 
coverage, human genome was a useful addition to the virtual genome construction, but not 
unexpectedly the biggest contributions came from well assembled genomes of closely 
related species. 
 

 bovine horse dog vsg1.2 total 

bovine 76,251 76,251 

horse 13,231 709 13,940 

dog 1,911 112 45 2,068 

vsg1.2 3,131 284 68 55 3,538 

total  95,797 

Table 5. Genomes providing mapping information for the sheep BACs mapped tail-to-tail in 

the vsg2.0. Datasets were added in the order, bovine, horse, dog and vsg1.2. 

 

Genome BACs positioned by number 

Both BESs vsg1.2 80,146 

Both BESs bovine 13,196 

One BES bovine or vsg1.2, other BES horse or dog 2431 

Both BESs horse 16 

One BES horse, other BES dog 5 

Both BESs dog 3 

 95,797 

Table 6. Genomes used to position the BACs on the virtual sheep genome. Datasets were 

added in the order, vsg1.2, bovine, horse, and dog. 

In other words, building on top of vsg1.2 and the use of a higher quality assembly of the 
bovine genome contributed a large number of new BACs with both ends positioned on the 
bovine assembly (Table 5). A large group of BACs were positioned with one end using the 
bovine or vsg1.2 position and the other using horse or dog. Very few BACs were positioned 
solely using horse and/or dog positions (Table 6). On this basis further improvement of the 
vsg would appear to be difficult and most likely to come from filling of gaps in the bovine 
genome sequence itself. 
Based on the mapping of the sheep BACs to the reorganised bovine genome assembly 943 

blocks of conserved synteny, defined by overlapping sheep BACs, were identified between 
the sheep and cattle genomes (Table 7). Assuming a genome size of 3Gb, the blocks had an 

average length of just over 3Mb. Although initially disappointing, even in the bovine 
genome assembly 537 BAC-based super-scaffolds were required to cover the complete 
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genome. The comparison of the number of blocks of conserved synteny identified across the 
different combinations of datasets demonstrates that the inclusion of additional species 

beyond the horse has a much greater impact on the reduction in the number of blocks of 
conserved synteny than it has on the total number of BACs positioned tail-to-tail. Only a 

25% increase in the number of BACs, but a 56% decrease in the number blocks of conserved 
synteny, i. e. on average every block of conserved synteny defined based on the mapping of 

BACs to the bovine genome has been extended to include one adjacent block of conserved 
synteny. 

 

genomes Sheep BAC contigs  

dog 2,146 

horse 1,470 

bovine 1,411 

bovine + dog + vsg1.2 1,299 

bovine + horse + dog + vsg1.2 943 

Table 7. Building the virtual sheep genome. 

3.4 Remaining ambiguities in the build of the bovine genome 

Since there were many occasions on which there was no unambiguous basis on which to 

identify the correct break points in the bovine genome assembly a large number of probable 
inversions identified by BACs remained in the final version of the bovine genome. Most of 

these inversions were also supported by sheep BACs (Fig 2). In addition, whilst potentially 
chimeric bovine genomic sequence contigs were identified during the reassembly process, 

their structure has not been changed in Btau3.5x. 

3.5 Construction of the virtual sheep genome (vsg2.0) 

The sheep markers (sheep map version 4.7) were used to reorganise the bovine genome 

assembly into the vsg. In the main this involved renumbering of the bovine chromosomes, 

with five inverted chromosomes (or segments of chromosomes), four chromosome fusions 

and a single chromosome breakage (Table 8). Reordering of the segments of the bovine 

genome defined by the BAC comparative genome contigs (CGCs) was undertaken on four 

chromosomes, 7, 12, 13 and X. Apart from the X chromosome, these were local changes and 

involved a small number of BAC CGCs covering a small region of the genome. Given the 

variation in the size of BACs, and the lack of comparative data from other genomes for 

species specific breaks, the boundaries of such breaks could not be unambiguously 

identified with the data currently available. Thus no attempt was made to resolve the small 

potential sheep specific rearrangements within chromosomes where the break points were 

ambiguous and there was not sufficient marker evidence to support a change in the 

organisation (Fig 3).  

The vsg 2.0 has been used in a number of analyses of the genome organisation of sheep and 

in general a high level of congruence with maps determined using other approaches has 

been observed (Drogemuller, et al., 2008; Wu, et al., 2008; Goldammer, et al., 2009c; Wu, et 

al., 2009), although the vsg 2 X chromosome build appears to contain a number of significant 

discrepancies (Goldammer, et al., 2009a; Goldammer, et al., 2009b). 
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Sheep chromosome Cattle chromosome 

OAR1 BTA3 (inv) + BTA1 

OAR2 BTA8 (inv) +BTA2 

OAR3 BTA11 (inv) + BTA5 

OAR4 BTA4 

OAR5 BTA7 

OAR6 BTA6 

OAR7 BTA10 

OAR8 BTA9 (part) 

OAR9 BTA9 (part, inv) +BTA14 

OAR10 BTA12 

OAR11 BTA19 

OAR12 BTA16 

OAR13 BTA13 

OAR14 BTA18 

OAR15 BTA15 

OAR16 BTA20 

OAR17 BTA17 

OAR18 BTA21 

OAR19 BTA22 

OAR20 BTA23 

OAR21 BTA29 

OAR22 BTA26 

OAR23 BTA24 

OAR24 BTA25 

OAR25 BTA28 

OAR26 BTA27 

OARX BTAX (inv) 

Table 8. High level comparison of the sheep and cattle genomes based on virtual sheep 
genome analysis. 

3.6 Construction of the virtual sheep genome (vsg2.0) genome browser 

The cattle and sheep BAC and BES locations are displayed on the chromosome overview 

track of the virtual sheep genome browser (VSG) allowing a quick assessment of the quality 

of the assembly to be made (Fig 3). In addition, the sheep virtual genome assembly was 

annotated with the locations of the sheep markers, SNPs on the 1536 pilot sheep SNP chip 

(Kijas, et al., 2009) and the Illumina Ovine SNP50 BeadChip, and human and bovine mRNA 

RefSeqs downloaded from the NCBI (NCBI_RefSeq). 
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Ovine Tail-Tail Outsize BACs  

 
Ovine Tail-Head BACs  

 
Ovine Tail-Head-Outsize BACs  

 
Ovine Head-Head BACs  

 
Ovine Head-Head-Outsize BACs  

 
Ovine unpaired BESs 

 
Bovine Tail-Tail Outsize BACs  

 
Bovine Tail-Head BACs  

 
Bovine Tail-Head-Outsize BACs  

 
Bovine Head-Head BACs  

 
Bovine Head-Head-Outsize BACs  

 
Sheep Markers 

 
1536 Pilot SNPs  

 

Fig. 3. Overview of chromosome OAR23 from the vsg v2 browser, displaying ovine and 
bovine BAC mapping, sheep linkage map markers and Pilot SNP Chip SNPs. 
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Fig. 4. A 5 Mb segment of the vsg 2 genome assembly of chromosome 23 showing the 
positions and orientations of sheep BACs and other tracks. 

4. Conclusion 

The new vsg2.0 is a significant improvement over vsg1.2, built on the human genome 
framework. Clearly using the genome from a closely related species and allowing the data 
from the species of interest to direct the process has an advantage over a very well 
assembled, but more distant genome. At the low resolution level down to the level of the 
BACs the sheep genome has a very high level of overall conserved synteny with the bovine 
genome structure. A number of regions of ambiguity remain, but many of these are in 
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regions of ambiguity of the assembly of the bovine genome and therefore await further 
refinement of the bovine genome assembly, or a predominantly de novo assembly of the 
sheep genome. However, overall it is clear that the vsg 2 makes a robust framework to 
assemble the large number of short contigs expected from the sequencing of the sheep 
genome (Archibald, et al., 2010).  
Two assembled genomes from closely related species is probably the optimal balance 
between analysis complexity and benefit, with inclusion of a more distant, but much better 
assembled genome, if the genomes of closely related species are not well assembled. Thus 
the methods that we have described are very broadly applicable. 
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