10,942 research outputs found

    Few-Boson Processes in the Presence of an Attractive Impurity under One-Dimensional Confinement

    Get PDF
    We consider a few-boson system confined to one dimension with a single distinguishable particle of lesser mass. All particle interactions are modeled with δ\delta-functions, but due to the mass imbalance the problem is nonintegrable. Universal few-body binding energies, atom-dimer and atom-trimer scattering lengths are all calculated in terms of two parameters, namely the mass ratio: mL/mHm_{\text{L}}/m_{\text{H}}, and ratio gHH/gHLg_{\text{HH}}/g_{\text{HL}} of the δ\delta-function couplings. We specifically identify the values of these ratios for which the atom-dimer or atom-trimer scattering lengths vanish or diverge. We identify regions in this parameter space in which various few-body inelastic process become energetically allowed. In the Tonks-Girardeau limit (gHH→∞g_{\text{HH}}\rightarrow \infty), our results are relevant to experiments involving trapped fermions with an impurity atom

    Hybrid applications over XML - integrating the declarative and navigational approaches

    Get PDF
    We discuss the design of a quasi-statically typed language for XML in which data may be associated with different structures and different algebras in different scopes, whilst preserving identity. In declarative scopes, data are trees and may be queried with the full flexibility associated with XML query algebras. In procedural scopes, data have more conventional structures, such as records and sets, and can be manipulated with the constructs normally found in mainstream languages. For its original form of structural polymorphism, the language offers integrated support for the development of hybrid applications over XML, where data change form to re flct programming expectations and enable their enforcement

    Derivation of tropospheric methane from TCCON CHâ‚„ and HF total column observations

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a global ground-based network of Fourier transform spectrometers that produce precise measurements of column-averaged dry-air mole fractions of atmospheric methane (CHâ‚„). Temporal variability in the total column of CHâ‚„ due to stratospheric dynamics obscures fluctuations and trends driven by tropospheric transport and local surface fluxes that are critical for understanding CHâ‚„ sources and sinks. We reduce the contribution of stratospheric variability from the total column average by subtracting an estimate of the stratospheric CHâ‚„ derived from simultaneous measurements of hydrogen fluoride (HF). HF provides a proxy for stratospheric CHâ‚„ because it is strongly correlated to CHâ‚„ in the stratosphere, has an accurately known tropospheric abundance (of zero), and is measured at most TCCON stations. The stratospheric partial column of CHâ‚„ is calculated as a function of the zonal and annual trends in the relationship between CHâ‚„ and HF in the stratosphere, which we determine from ACE-FTS satellite data. We also explicitly take into account the CHâ‚„ column averaging kernel to estimate the contribution of stratospheric CHâ‚„ to the total column. The resulting tropospheric CHâ‚„ columns are consistent with in situ aircraft measurements and augment existing observations in the troposphere

    Semiclassical ionization dynamics of the hydrogen molecular ion in an electric field of arbitrary orientation

    Full text link
    Quasi-static models of barrier suppression have played a major role in our understanding of the ionization of atoms and molecules in strong laser fields. Despite their success, in the case of diatomic molecules these studies have so far been restricted to fields aligned with the molecular axis. In this paper we investigate the locations and heights of the potential barriers in the hydrogen molecular ion in an electric field of arbitrary orientation. We find that the barriers undergo bifurcations as the external field strength and direction are varied. This phenomenon represents an unexpected level of intricacy even on this most elementary level of the dynamics. We describe the dynamics of tunnelling ionization through the barriers semiclassically and use our results to shed new light on the success of a recent theory of molecular tunnelling ionization as well as earlier theories that restrict the electric field to be aligned with the molecular axis

    A Phase 1b Study of Humanized Ks-Interleukin-2 (Huks-Il2) Immunocytokine with Cyclophosphamide in Patients with Epcam-Positive Advanced Solid Tumors

    Get PDF
    BackgroundHumanized KS-interleukin-2 (huKS-IL2), an immunocytokine with specificity for epithelial cell adhesion molecule (EpCAM), has demonstrated favorable tolerability and immunologic activity as a single agent.MethodsPhase 1b study in patients with EpCAM-positive advanced solid tumors to determine the maximum tolerated dose (MTD) and safety profile of huKS-IL2 in combination with low-dose cyclophosphamide. Treatment consisted of cyclophosphamide (300mg/m2 on day 1), and escalating doses of

    Correlation length scalings in fusion edge plasma turbulence computations

    Full text link
    The effect of changes in plasma parameters, that are characteristic near or at an L-H transition in fusion edge plasmas, on fluctuation correlation lengths are analysed by means of drift-Alfven turbulence computations. Scalings by density gradient length, collisionality, plasma beta, and by an imposed shear flow are considered. It is found that strongly sheared flows lead to the appearence of long-range correlations in electrostatic potential fluctuations parallel and perpendicular to the magnetic field.Comment: Submitted to "Plasma Physics and Controlled Fusion
    • …
    corecore